Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gunalan, Vithiagaran"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein
    (Elsevier, 2007) Kumar, Purnima; Gunalan, Vithiagaran; Liu, Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.
    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein–protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8– ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication
  • Loading...
    Thumbnail Image
    Item
    Severe acute respiratory syndrome coronavirus protein 7a interacts with hSGT
    (Elsevier, 2006) Fielding, Burtram C.; Gunalan, Vithiagaran; Tan, Timothy H.P.; Chou, Chih-Fong; Shen, Shuo; Khan, Sehaam; Lim, Seng Gee; Hong, Wanjin; Tan, Yee-Joo
    Severe acute respiratory syndrome coronavirus (SARS-CoV) 7a is an accessory protein with no known homologues. In this study, we report the interaction of a SARS-CoV 7a and small glutamine-rich tetratricopeptide repeat-containing protein (SGT). SARS-CoV 7a and human SGT interaction was identified using a two-hybrid system screen and confirmed with interaction screens in cell culture and cellular co-localization studies. The SGT domain of interaction was mapped by deletion mutant analysis and results indicated that tetratricopeptide repeat 2 (aa 125-158) was essential for interaction. We also showed that 7a interacted with SARS-CoV structural proteins M (membrane) and E (envelope), which have been shown to be essential for virus-like particle formation. Taken together, our results coupled with data from studies of the interaction between SGT and HIV-1 vpu indicated that SGT could be involved in the life-cycle, possibly assembly of SARS-CoV.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback