Browsing by Author "Gonzalez-Solares, Eduardo A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The complex physics of dusty star-forming galaxies at high redshifts as revealed by Herschel and Spitzer(IOP Publishing, 2013) Lo Faro, Barbara; Franceschini, Alberto; Vaccari, M.; Silva, L.; Rodighiero, G.; Berta, S.; Bock, J.; Burgarella, D.; Buat, V.; Cava, A.; Clements, D.L.; Cooray, Asantha; Farrah, D.; Feltre, Anna; Gonzalez-Solares, Eduardo A.; Hurley, P.; Lutz, D.; Magdis, G.; Magnelli, B.; Marchetti, L.; Oliver, S.J.; Page, Matthew J.; Popesso, P.; Pozzi, F.; Rigopoulou, D.; Rowan-Robinson, M.; Roseboom, I.G.; Scott, Douglas; Smith, A.J.; Symeonidis, Myrto; Wang, L.; Wuyts, S.We combine far-infrared photometry from Herschel (PEP/HerMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 luminous and ultraluminous infrared galaxies ((U)LIRGs) at z ∼ 1 and 2 selected in GOODS-S with 24μm fluxes between 0.2 and 0.5 mJy.We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of star formation (SFR 100M yr−1). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history.We also find discrepancies between our results and those based on optical-only spectral energy distribution (SED) fitting for the same objects; by fitting their observed SEDs with our physical model we find higher extinctions (by ΔAV ∼ 0.81 and 1.14) and higher stellar masses (by Δlog(M ) ∼ 0.16 and 0.36 dex) for z ∼ 1 and z ∼ 2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust-obscured objects. We also find lower SFRs than those computed from LIR using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through “cirrus” emission (∼73% and ∼66% of the total LIR for z ∼ 1 and z ∼ 2 (U)LIRGs, respectively).Item Revised SWIRE photometric redshifts(Oxford University Press, 2013) Rowan-Robinson, Michael; Gonzalez-Solares, Eduardo A.; Vaccari, Mattia; Marchetti, L.We have revised the Spitzer Wide-Area Infrared Extragalactic survey (SWIRE) Photometric Redshift Catalogue to take account of new optical photometry in several of the SWIRE areas, and incorporating Two Micron All Sky Survey (2MASS) and UKIRT Infrared Deep Sky Survey (UKIDSS) near-infrared data. Aperture matching is an important issue for combining near-infrared and optical data, and we have explored a number of methods of doing this. The increased number of photometric bands available for the redshift solution results in improvements both in the rms error and, especially, in the outlier rate. We have also found that incorporating the dust torus emission into the quasi-stellar object (QSO) templates improves the performance for QSO redshift estimation. Our revised redshift catalogue contains over 1 million extragalactic objects, of which 26 288 are QSOs.Item The roles of star formation and AGN activity of IRS sources in the HerMES fields(Oxford University Press, 2013) Feltre, Anna; Hatziminaoglou, Evanthia; Vaccari, Mattia; Hernán-Caballero, Antonio; Fritz, Jacopo; Franceschini, Alberto; Bock, J.; Cooray, Asantha; Farrah, Duncan; Gonzalez-Solares, Eduardo A.; Ibar, Edo; Isaak, Kate G.; Lo Faro, Barbara; Marchetti, L.; Oliver, Seb J.; Page, Matthew J.; Rigopoulou, Dimitra; Roseboom, Isaac G.; Symeonidis, MyrtoIn this work we explore the impact of the presence of an active galactic nucleus (AGN) on the mid- and far-infrared (IR) properties of galaxies as well as the effects of simultaneous AGN and starburst activity in these same galaxies. To do this we apply a multi-component, multi-band spectral synthesis technique to a sample of 250 μm selected galaxies of the HerschelMulti- tiered Extragalactic Survey (HerMES), with IRS spectra available for all galaxies. Our results confirm that the inclusion of the IRS spectra plays a crucial role in the spectral analysis of galaxies with an AGN component improving the selection of the best-fit hot dust (torus) model. We find a correlation between the obscured star formation rate (SFR) derived from the IR luminosity of the starburst component, SFRIR and SFRPAH, derived from the luminosity of the PAH features, LPAH, with SFRFIR taking higher values than SFRPAH. The correlation is different for AGN- and starburst-dominated objects. The ratio of LPAH to that of the starburst component, LPAH/LSB, is almost constant for AGN-dominated objects but decreases with increasing LSB for starburst-dominated objects. SFRFIR increases with the accretion luminosity, Lacc, with the increase less prominent for the very brightest, unobscured AGN-dominated sources. We find no correlation between the masses of the hot (AGN-heated) and cold (starburstheated) dust components. We interpret this as a non-constant fraction of gas driven by the gravitational effects to the AGN while the starburst is ongoing. We also find no evidence of the AGN affecting the temperature of the cold dust component, though this conclusion is mostly based on objects with a non-dominantAGN component.We conclude that our findings do not provide evidence that the presence of AGN affects the star formation process in the host galaxy, but rather that the two phenomena occur simultaneously over a wide range of luminosities.Item The VISTA Deep Extragalactic Observations (VIDEO) survey(Oxford University Press, 2013) Jarvis, Matt; Bonfield, David G.; Bruce, V.A.; Zwart, J.; Geach, J.E.; McAlpine, K.; McLure, R.J.; Gonzalez-Solares, Eduardo A.; Irwin, M.; Lewis, J.; Kupcu Yoldas, A.; Andreon, S.; Cross, N.J.G.; Emerson, J.P.; Dalton, G.; Dunlop, J.S.; Hodgkin, S. T.; Le Fevre, O.; Karouzos, M.; Meisenheimer, K.; Oliver, S.; Rawlings, S.; Simpson, Chris; Smail, I.; Smith, Daniel J.B.; Sullivan, M.; Sutherland, W.; White, S.V.In this paper we describe the first data release of the the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey. VIDEO is a 12 degree2 survey in the near-infrared Z,Y ,J,H andKs bands, specifically designed to enable the evolution of galaxies and large structures to be traced as a function of both epoch and environment from the present day out to z=4, and active galactic nuclei (AGN) and the most massive galaxies up to and into the epoch of reionization. With its depth and area, VIDEO will be able to fully explore the period in the Universe where AGN and starburst activity were at their peak and the first galaxy clusters were beginning to virialize. VIDEO therefore offers a unique data set with which to investigate the interplay between AGN, starbursts and environment, and the role of feedback at a time when it was potentially most crucial. We provide data over the VIDEO-XMM3 tile, which also covers the Canada-France- Hawaii-Telescope Legacy Survey Deep-1 field (CFHTLS-D1). The released VIDEO data reach a 5 AB-magnitude depth of Z = 25:7, Y = 24:5, J = 24:4, H = 24:1 and Ks = 23:8 in 2 arcsec diameter apertures (the full depth of Y = 24:6 will be reached within the full integration time in future releases). The data are compared to previous surveys over this field and we find good astrometric agreement with the Two-Micron All Sky Survey, and source counts in agreement with the recently released UltraVISTA survey data. The addition of the VIDEO data to the CFHTLS-D1 optical data increases the accuracy of photometric redshifts and significantly reduces the fraction of catastrophic outliers over the redshift range 0 < z < 1 from 5.8 to 3.1 per cent in the absence of an iband luminosity prior. However, we expect the main improvement in photometric redshifts will come in the redshift range 1 < z < 4 due to the sensitivity to the Balmer and 4000°A breaks provided by the near-infrared VISTA filters. All images and catalogues presented in this paper are publicly available through ESO’s phase 3 archive and the VISTA Science Archive.