Browsing by Author "Galal, Ushma"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Panel of Ancestry Informative Markers for the Complex Five-Way Admixed South African Coloured Population(PloS, 2013) Daya, Michelle; van der Merwe, Lize; Galal, Ushma; Möller, Marlo; Salie, Muneeb; Chimusa, Emile R.; Galanter, Joshua M.; van Helden, Paul D.; Henn, Brenna M.; Gignoux, Chris R.; Hoal, Eileen G.Admixture is a well known confounder in genetic association studies. If genome-wide data is not available, as would be the case for candidate gene studies, ancestry informative markers (AIMs) are required in order to adjust for admixture. The predominant population group in the Western Cape, South Africa, is the admixed group known as the South African Coloured (SAC). A small set of AIMs that is optimized to distinguish between the five source populations of this population (African San, African non-San, European, South Asian, and East Asian) will enable researchers to cost-effectively reduce false-positive findings resulting from ignoring admixture in genetic association studies of the population. Using genome-wide data to find SNPs with large allele frequency differences between the source populations of the SAC, as quantified by Rosenberg et. al's -statistic, we developed a panel of AIMs by experimenting with various selection strategies. Subsets of different sizes were evaluated by measuring the correlation between ancestry proportions estimated by each AIM subset with ancestry proportions estimated using genome-wide data. We show that a panel of 96 AIMs can be used to assess ancestry proportions and to adjust for the confounding effect of the complex five-way admixture that occurred in the South African Coloured population.Item The statistical theory underlying human genetic linkage analysis based on quantitative data from extended families(University of the Western Cape, 2010) Galal, Ushma; van der Merwe, Lize; Blignaut, Renette; Dept. of Statistics; Faculty of ScienceTraditionally in human genetic linkage analysis, extended families were only used in the analysis of dichotomous traits, such as Disease/No Disease. For quantitative traits, analyses initially focused on data from family trios (for example, mother, father, and child) or sib-pairs. Recently however, there have been two very important developments in genetics: It became clear that if the disease status of several generations of a family is known and their genetic information is obtained, researchers can pinpoint which pieces of genetic material are linked to the disease or trait. It also became evident that if a trait is quantitative (numerical), as blood pressure or viral loads are, rather than dichotomous, one has much more power for the same sample size. This led to the development of statistical mixed models which could incorporate all the features of the data, including the degree of relationship between each pair of family members. This is necessary because a parent-child pair definitely shares half their genetic material, whereas a pair of cousins share, on average, only an eighth. The statistical methods involved here have however been developed by geneticists, for their specific studies, so there does not seem to be a unified and general description of the theory underlying the methods. The aim of this dissertation is to explain in a unified and statistically comprehensive manner, the theory involved in the analysis of quantitative trait genetic data from extended families. The focus is on linkage analysis: what it is and what it aims to do. There is a step-by-step build up to it, starting with an introduction to genetic epidemiology. This includes an explanation of the relevant genetic terminology. There is also an application section where an appropriate human genetic family dataset is analysed, illustrating the methods explained in the theory sections.