Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fipaza, Vincent Lukhanyiso"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The development of functionalized metallic nanoparticles for the treatment of brain cancer
    (University of the Western Cape, 2019) Fipaza, Vincent Lukhanyiso; Ekpo, Okobi
    Cancers of the nervous system often result from abnormal and uncontrolled growth of cells in nervous tissue. Glioblastoma Multiforme (GBM) and neuroblastoma (NB) are among the most common nervous system-associated cancers known to be relatively difficult to treat. GBM is an aggressive cancer in adults while NB mostly develops in infants and children younger than five years old. Current chemotherapeutic treatment options for GBM and NB have a number of drawbacks, including non-specific toxicity, drug resistance and the inability to cross the blood-brain barrier (BBB). Therefore, there is a need to develop new treatment options that can cross the BBB with minimal or no side effects to normal neural tissues. Gold (Au) and platinum (Pt) nanoparticles (NPs) have been shown to play a role in drug delivery by crossing the BBB to selectively target cancer tissue. However, these metallic nanoparticles have a short life span in the circulatory system and often elicit immune reactions. The functionalization of nanoparticles with polyethylene glycol (PEG) helps to improve their stability and biocompatibility. The aim of this study was therefore to develop PEGylated metallic nanoparticles and investigate their potential in vitro cytotoxic effects on SH SY5Y (NB) and U87 (GBM) cell lines.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback