Browsing by Author "Duniya, Didam G.A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Clustering of quintessence on horizon scales and its imprint on HI intensity mapping(IOP Science, 2013) Duniya, Didam G.A.; Bertacca, Daniele; Maartens, RoyQuintessence can cluster only on horizon scales. What is the effect on the observed matter distribution? To answer this, we need a relativistic approach that goes beyond the standard Newtonian calculation and deals properly with large scales. Such an approach has recently been developed for the case when dark energy is vacuum energy, which does not cluster at all. We extend this relativistic analysis to deal with dynamical dark energy. Using three quintessence potentials as examples, we compute the angular power spectrum for the case of an HI intensity map survey. Compared to the concordance model with the same small-scale power at z = 0, quintessence boosts the angular power by up to 15% at high redshifts, while power in the two models converges at low redshifts. The difference is mainly due to the background evolution, driven mostly by the normalization of the power spectrum today. The dark energy perturbations make only a small contribution on the largest scales, and a negligible contribution on smaller scales. Ironically, the dark energy perturbations remove the false boost of large-scale power that arises if we impose the (unphysical) assumption that the dark energy is smooth.Item Probing beyond-Horndeski gravity on ultra-large scales(IOP Publishing Ltd, 2020) Duniya, Didam G.A.; Moloi, Teboho; Clarkson, ChrisThe beyond-Horndeski gravity has recently been reformulated in the dark energy paradigm — which has been dubbed, Unified Dark Energy (UDE). The evolution equations for the given UDE appear to correspond to a non-conservative dark energy scenario, in which the total energy-momentum tensor is not conserved. We investigate both the background cosmology and, the large-scale imprint of the UDE by probing the angular power spectrum of galaxy number counts, on ultra-large scales; taking care to include the full relativistic corrections in the observed overdensity. The background evolution shows that only an effective mass smaller than the Planck mass is needed in the early universe in order for predictions in the given theory to match current observational constraints. We found that the effective mass-evolution-rate parameter, which drives the evolution of the UDE, acts to enhance the observed power spectrum and, hence, relativistic effects (on ultra-large scales) by enlarging the UDE sound horizon.