Browsing by Author "Dlamini, Zodwa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Reports of plant-derived nanoparticles for prostate cancer therapy(MDPI, 2023) Elbagory, Abdulrahman M; Hull, Rodney; Meyer, Mervin; Dlamini, ZodwaPlants have demonstrated potential in providing various types of phytomedicines with chemopreventive properties that can combat prostate cancer. However, despite their promising in vitro activity, the incorporation of these phytochemicals into the market as anticancer agents has been hindered by their poor bioavailability, mainly due to their inadequate aqueous solubility, chemical instability, and unsatisfactory circulation time. To overcome these drawbacks, it has been suggested that the incorporation of phytochemicals as nanoparticles can offer a solution. The use of plant-based chemicals can also improve the biocompatibility of the formulated nanoparticles by avoiding the use of certain hazardous chemicals in the synthesis, leading to decreased toxicity in vivo. Moreover, in some cases, phytochemicals can act as targeting agents to tumour sites. This review will focus on and summarize the following points: the different types of nanoparticles that contain individual phytochemicals or plant extracts in their design with the aim of improving the bioavailability of the phytochemicals; the therapeutic evaluation of these nanoparticles against prostate cancer both in vitro and in vivo and the reported mode of action and the different types of anticancer experiments used; how the phytochemicals can also improve the targeting effects of these nanoparticles in some instances; and the potential toxicity of these nanoparticles.Item Reports of Plant-Derived Nanoparticles for Prostate Cancer Therapy(Plants, 2023) Elbagory, Abdulrahman M.; Meyer, Mervin; Hull, Rodney; Dlamini, ZodwaBackground: Plants have demonstrated potential in providing various types of phytomedicines with chemopreventive properties that can combat prostate cancer. However, despite their promising in vitro activity, the incorporation of these phytochemicals into the market as anticancer agents has been hindered by their poor bioavailability, mainly due to their inadequate aqueous solubility, chemical instability, and unsatisfactory circulation time. To overcome these drawbacks, it has been suggested that the incorporation of phytochemicals as nanoparticles can offer a solution. The use of plant-based chemicals can also improve the biocompatibility of the formulated nanoparticles by avoiding the use of certain hazardous chemicals in the synthesis, leading to decreased toxicity in vivo. Moreover, in some cases, phytochemicals can act as targeting agents to tumour sites.Item Role and merits of green based nanocarriers in cancer treatment(MPDI, 2021) Elbagory, Abdulrahman M.; Marima, Rahaba Makgotso; Dlamini, ZodwaThe use of nanocarriers for biomedical applications has been gaining interests from researchers worldwide for the delivery of therapeutics in a controlled manner. These “smart” vehicles enhance the dissolution and the bioavailability of drugs and enable their delivery to the target site. Taking the potential toxicity into consideration, the incorporation of natural “green” materials, derived from plants or microbial sources, in the nanocarriers fabrication, improve their safety and biocompatibility. These green components can be used as a mechanical platform or as targeting ligand for the payload or can play a role in the synthesis of nanoparticles. Several studies reported the use of green based nanocarriers for the treatment of diseases such as cancer. This review article provides a critical analysis of the different types of green nanocarriers and their synthesis mechanisms, characterization, and their role in improving drug delivery of anticancer drugs to achieve precision cancer treatment. Current evidence suggests that green-based nanocarriers can constitute an effective treatment against cancer.