Browsing by Author "Dlamini, Senanile B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Application of an in silico approach identifies a genetic locus within ITGB2, and its interactions with HSPG2 and FGF9, to be associated with anterior cruciate ligament rupture risk(Taylor and Francis Group, 2023) Dlamini, Senanile B.; Saunders, Colleen J.; Laguette, Mary-Jessica N.We developed a Biomedical Knowledge Graph model that is phenotype and biological functionaware through integrating knowledge from multiple domains in a Neo4j, graph database. All known human genes were assessed through the model to identify potential new risk genes for anterior cruciate ligament (ACL) ruptures and Achilles tendinopathy (AT). Genes were prioritised and explored in a case–control study comparing participants with ACL ruptures (ACL-R), including a sub-group with non-contact mechanism injuries (ACL-NON), to uninjured control individuals (CON). After gene filtering, 3376 genes, including 411 genes identified through previous whole exome sequencing, were found to be potentially linked to AT and ACL ruptures. Four variants were prioritised: HSPG2:rs2291826A/G, HSPG2:rs2291827G/A, ITGB2:rs2230528C/T and FGF9:rs2274296C/T. The rs2230528 CC genotype was over-represented in the CON group compared to ACL-R (p < 0.001) and ACL-NON (p < 0.001) and the TT genotype and T allele were over-represented in the ACL-R group and ACL-NON compared to CON (p < 0.001) group.Item Application of anin silicoapproach identifies a genetic locus withinITGB2,and itsinteractions withHSPG2 and FGF9,to be associated with anterior cruciateligament rupture risk(Taylor and Francis Group, 2023) Dlamini, Senanile B.; Saunders, Colleen J.; Gamieldien, JunaidWe developed a Biomedical Knowledge Graph model that is phenotype and biological function-aware through integrating knowledge from multiple domains in a Neo4j, graph database. Allknown human genes were assessed through the model to identify potential new risk genes foranterior cruciate ligament (ACL) ruptures and Achilles tendinopathy (AT). Genes were prioritisedand explored in a case–control study comparing participants with ACL ruptures (ACL-R),including a sub-group with non-contact mechanism injuries (ACL-NON), to uninjured controlindividuals (CON). After genefiltering, 3376 genes, including 411 genes identified throughprevious whole exome sequencing, were found to be potentially linked to AT and ACL ruptures.Four variants were prioritised:HSPG2:rs2291826A/G,HSPG2:rs2291827G/A,ITGB2:rs2230528C/TandFGF9:rs2274296C/T. The rs2230528 CC genotype was over-represented in the CON groupcompared to ACL-R (p< 0.001) and ACL-NON (p< 0.001) and the TT genotype and T allele wereover-represented in the ACL-R group and ACL-NON compared to CON (p< 0.001) group. Severalsignificant differences in distributions were noted for the gene-gene interactions: (HSPG2:rs2291826, rs2291827 andITGB2:rs2230528) and (ITGB2:rs2230528 andFGF9:rs2297429).