Browsing by Author "Dingwoke, Emeka John"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparative venom toxin analyses of Nigerian viperidae and elapidae snakes(Elsevier, 2023) Adamude, Fatima Amin; Dingwoke, Emeka John; Klein, AshwilEnvenoming by snakebite is a serious health problem that maims and kills a large number of people, primarily in rural areas of developing African countries. The first comparative venom proteomic analyses of four snakes from the viperidae (E. ocellatus and B. arietans) and elapidae (N. haje and N. katiensis) families are presented in this study. Two-dimensional electrophoresis was combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry to analyze the venoms. Proteins were identified by comparing mass spectrometry spectra to those in the reviewed Uniprot-Serpentes database. A protein spot was considered differentially present between samples at a p-value of < 0.05 and a fold change of >2. Viper venoms contained cytotoxic-inducing proteins such as SVMPs, SVSPs, and cytotoxins, whereas elapid snake venoms contained neurotoxic proteins such as PLA2, 3-FTx, and neurotoxins.Item Venom proteomic analysis of medically important Nigerian viper Echis ocellatus and Bitis arietans snake species(Elsevier, 2021) Dingwoke, Emeka John; Adamude, Fatima Amin; Klein, AshwilSnakebite envenoming remains a neglected tropical disease which poses severe health hazard, especially for the rural inhabitants in Africa. In Nigeria, vipers are responsible for the highest number of deaths. Hydrophilic interaction liquid chromatography coupled with LC-MS/MS was used to analyze the crude venoms of Echis ocellatus (Carpet viper) and Bitis arietans (Puff adder) in order to understand their venom proteomic identities. Results obtained revealed that gel-free proteomic analysis of the crude venoms led to the identification of 85 and 79 proteins, respectively. Seventy-eight (78) proteins were common between the two snake species with a 91.8% similarity score. The identified proteins belong to 18 protein families in E. ocellatus and 14 protein families in B. arietans. Serine proteases (22.31%) and metalloproteinases (21.06%) were the dominant proteins in the venom of B. arietans; while metalloproteinases (34.84%), phospholipase A2s (21.19%) and serine proteases (15.50%) represent the major toxins in the E. ocellatus venom. Other protein families such as three-finger toxins and cysteine-rich venom proteins were detected in low proportions. This study provides an insight into the venom proteomic analysis of the two Nigerian viper species, which could be useful in identifying the toxin families to be neutralized in case of envenomation.