Browsing by Author "De Kock, M"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A baseline evaluation of the cytotoxicity of gold nanoparticles in different types of mammalian cells for future radiosensitization studies(University of the Western Cape, 2020) De Bruyn, Shana; De Kock, MRecently nanoparticles (NPs) have been introduced and used in combination with therapeutic approaches to develop nanotechnology-enabled medicine. These nanostructures allow for the exploitation of the physiochemical properties which may be beneficial in cancer treatment. The use of NPs in nanomedicine has proven successful in modern chemotherapeutics and has demonstrated promising potential in in vivo and in vitro radiosensitization studies. This is a baseline study aimed to determine the cytotoxic effects of AuNPs for potential radiosensitization analysis. The study analysed the effects of different AuNP sizes (30, 50 and 80nm), concentrations (5, 10 and 15 μg/ml) over various time periods in CHOK1 and A549 cells. AuNPs were characterised by DLS and ZP analysis and showed that particles were moderately polydispersed and moderately to highly stable in charge. The effects on viability and metabolic activity of cells were determined using crystal violet and the WST-1 assay.Item In vitro comparison of the anti-proliferative effects of galenia africana on human skin cell lines(MDPI, 2021) Ndlovu, B; De Kock, M; Klaasen, JMalignant melanoma is the major cause of skin cancer-related deaths. Surgery in combina-tion with radiotherapy, immunotherapy or chemotherapy is used to eradicate cancer cells, however, this treatment option is limited by the tolerance of the surrounding healthy tissue. The extracts from Galenia africana have been shown to possess anti-cancer flavonoid compounds and can be a safer and cost-effective alternative treatment. The study aimed to compare the anti-proliferative effects of G. africana on human skin cells (HaCaT) and human malignant melanoma cells (A375). The cells were exposed to various concentrations of the G. africana extract at different times. In vitro assays were employed to determine cell viability and cytotoxicity. Hoechst 33342 staining was performed to observe the nuclear changes, including apoptosis. G. africana significantly reduced the cell viability of the A375 cells in a dose and time-dependent manner, while having no effect on the HaCaT cells. The A375 cells displayed nuclear condensation, brightly stained nuclei and nuclear fragmentation indicative of apoptosis.