Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Coulton, William R"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Quijote-png: Simulations of primordial non-gaussianity and the information content of the matter field power spectrum and bispectrum
    (IOP Publishing, 2023) Coulton, William R; Villaescusa-Navarro, Francisco; Karagiannis, Dionysios
    Primordial non-Gaussianity (PNG) is one of the most powerful probes of the early universe, and measurements of the large-scale structure of the universe have the potential to transform our understanding of this area. However, relating measurements of the late-time universe to the primordial perturbations is challenging due to the nonlinear processes that govern the evolution of the universe. To help address this issue, we release a large suite of N-body simulations containing four types of PNG: QUIJOTE-PNG. These simulations were designed to augment the QUIJOTE suite of simulations that explored the impact of various cosmological parameters on large-scale structure observables. Using these simulations, we investigate how much information on PNG can be extracted by extending power spectrum and bispectrum measurements beyond the perturbative regime at z = 0.0. This is the first joint analysis of the PNG and cosmological information content accessible with power spectrum and bispectrum measurements of the nonlinear scales. We find that the constraining power improves significantly up to kmax 0.3 Mpc h » -1 , with diminishing returns beyond as the statistical probes signal-to-noise ratios saturate. This saturation emphasizes the importance of accurately modeling all the contributions to the covariance matrix. Further, we find that combining the two probes is a powerful method of breaking the degeneracies with the ΛCDM parameters.
  • Loading...
    Thumbnail Image
    Item
    Quijote-png: The information content of the halo power spectrum and bispectrum
    (IOP Publishing, 2023) Coulton, William R; Villaescusa-Navarro, Francisco; Karagiannis, Dionysios
    We investigate how much can be learnt about four types of primordial non-Gaussianity (PNG) from small-scale measurements of the halo field. Using the QUIJOTE-PNG simulations, we quantify the information content accessible with measurements of the halo power spectrum monopole and quadrupole, the matter power spectrum, the halo–matter cross spectrum, and the halo bispectrum monopole. This analysis is the first to include small, nonlinear scales, up to kmax 0.5 h Mpc = -1 , and to explore whether these scales can break degeneracies with cosmological and nuisance parameters making use of thousands of N-body simulations. We perform all the halo measurements in redshift space with a single sample comprised of all halos with mass >3.2 × 1013 h−1 Me. For local PNG, measurements of the scale-dependent bias effect from the power spectrum using sample variance cancellation provide significantly tighter constraints than measurements of the halo bispectrum. In this case measurements of the small scales add minimal additional constraining power. In contrast, the information on equilateral and orthogonal PNG is primarily accessible through the bispectrum. For these shapes, small-scale measurements increase the constraining power of the halo bispectrum by up to 4×, though the addition of scales beyond k ≈ 0.3 h Mpc−1 improves constraints largely through reducing degeneracies between PNG and the other parameters.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback