Browsing by Author "Clarkson, Chris"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
Item Anti-lensing: the bright side of voids(American Physical Society, 2013) Bolejko, Krzysztof; Clarkson, Chris; Maartens, Roy; Bacon, David; Meures, Nikolai; Beynon, EmmaMore than half of the volume of our Universe is occupied by cosmic voids. The lensing magni ca- tion e ect from those under-dense regions is generally thought to give a small dimming contribution: objects on the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which together with conservation of surface brightness implies net reduction in photons received. This is predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that this standard e ect is swamped at low redshifts by a relativistic Doppler term that is typically neglected. Contrary to the usual expectation, objects on the far side of a void are brighter than they would be otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full relativistic lensing convergence. There are also signi cant nonlinear corrections to the relativistic linear theory, which we show actually under-predicts the e ect. We use exact solutions to estimate that these can be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the reported extra scatter of eld supernovae located on the edge of voids compared to those in clusters.Item Cosmology with next generation radio telescopes(University of the Western Cape, 2019) Witzemann, Amadeus; Santos, Mario; Weltman, Amanda; Clarkson, ChrisThe next generation of radio telescopes will revolutionize cosmology by providing large three-dimensional surveys of the universe. This work presents forecasts using the technique 21cm intensity mapping (IM) combined with results from the cosmic microwave background, or mock data of galaxy surveys. First, we discuss prospects of constraining curvature independently of the dark energy (DE) model, finding that the radio instrument HIRAX will reach percent-level accuracy even when an arbitrary DE equation of state is assumed. This is followed by a study of the potential of the multi-tracer technique to surpass the cosmic variance limit, a crucial method to probe primordial non-Gaussianity and large scale general relativistic e↵ects. Using full sky simulations for the Square Kilometre Array phase 1 (SKA 1 MID) and the Large Synoptic Survey Telescope (LSST), including foregrounds, we demonstrate that the cosmic variance contaminated scenario can be beaten even in the noise free case. Finally, we derive the signal to noise ratio for the cosmic magnification signal from foreground HI intensity maps combined with background galaxy count maps. Instruments like SKA1 MID and HIRAX are highly complementary and well suited for this measurement. Thanks to the powerful design of the planned radio instruments, all results confirm their potential and promise an exciting future for cosmology.Item Galaxy correlations and the BAO in a void universe: structure formation as a test of the Copernican Principle(IOP Science, 2013) February, Sean; Clarkson, Chris; Maartens, RoyA suggested solution to the dark energy problem is the void model, where accelerated expansion is replaced by Hubble-scale inhomogeneity. In these models, density perturbations grow on a radially inhomogeneous background. This large scale inhomogeneity distorts the spherical Baryon Acoustic Oscillation feature into an ellipsoid which implies that the bump in the galaxy correlation function occurs at different scales in the radial and transverse correlation functions. We compute these for the first time, under the approximation that curvature gradients do not couple the scalar modes to vector and tensor modes. The radial and transverse correlation functions are very different from those of the concordance model, even when the models have the same average BAO scale. This implies that if void models are fine-tuned to satisfy average BAO data, there is enough extra information in the correlation functions to distinguish a void model from the concordance model. We expect these new features to remain when the full perturbation equations are solved, which means that the radial and transverse galaxy correlation functions can be used as a powerful test of the Copernican Principle.Item The Hubble constant tension with next-generation galaxy surveys(IOP Publishing Ltd, 2020) Bengaly, Carlos A.P.; Clarkson, Chris; Maartens, RoyThe rate at which the universe is expanding today is a fundamental parameter in cosmology which governs our understanding of structure formation and dark energy. However, current measurements of the Hubble constant, H0, show a significant tension (∼ 4–6σ) between early- and late-Universe observations. There are ongoing efforts to check the diverse observational results and also to investigate possible theoretical ways to resolve the tension — which could point to radical extensions of the standard model. Here we demonstrate the potential of next-generation spectroscopic galaxy surveys to shed light on the Hubble constant tension. Surveys such as those with Euclid and the Square Kilometre Array (SKA) are expected to reach sub-percent precision on Baryon Acoustic Oscillation (BAO) measurements of the Hubble parameter, with a combined redshift coverage of 0.1 < z < 3. This wide redshift range, together with the high precision and low level of systematics in BAO measurements, mean that these surveys will provide independent and tight constraints on H(z). These H(z) measurements can be extrapolated to z = 0 to provide constraints on H0 using a non-parametric regression.Item The kinematic dipole in galaxy redshift surveys(IOP Publishing, 2018) Maartens, Roy; Clarkson, Chris; Chen, SongIn the concordance model of the Universe, the matter distribution { as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) - should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic e ects. The amplitude of the matter dipole can be signi cantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.Item Multipoles of the relativistic galaxy bispectrum(IOP Publishing Ltd, 2020) Clarkson, Chris; de Weerd, Eline M.; Jolicoeur, SheeanAbove the equality scale the galaxy bispectrum will be a key probe for measuring primordial non-Gaussianity which can help differentiate between different inflationary models and other theories of the early universe. On these scales a variety of relativistic effects come into play once the galaxy number-count fluctuation is projected onto our past lightcone. By decomposing the Fourier-space bispectrum into invariant multipoles about the observer’s line of sight we examine in detail how the relativistic effects contribute to these. We show how to perform this decomposition analytically, which is significantly faster for subsequent computations. While all multipoles receive a contribution from the relativistic part, odd multipoles arising from the imaginary part of the bispectrum have no Newtonian contribution, making the odd multipoles a smoking gun for a relativistic signature in the bispectrum for single tracers. The dipole and the octopole are significant on equality scales and above where the Newtonian approximation breaks down. This breakdown is further signified by the fact that the even multipoles receive a significant correction on very large scales.Item A null test to probe the scale dependence of the growth of structure as a test of general relativity(Oxford University Press, 2019) Clarkson, Chris; Franco, Felipe Oliveira; Bonvin, CamilleThe main science driver for the coming generation of cosmological surveys is understanding dark energy that relies on testing general relativity on the largest scales. Once we move beyond the simplest explanation for dark energy of a cosmological constant, the space of possible theories becomes both vast and extremely hard to compute realistic observables. A key discriminator of a cosmological constant, however, is that the growth of structure is scale invariant on large scales. By carefully weighting observables derived from distributions of galaxies and a dipole pattern in their apparent sizes, we construct a null test that vanishes for any model of gravity or dark energy where the growth of structure is scale independent. It relies only on very few assumptions about cosmology, and does not require any modelling of the growth of structure.Item Null tests of the concordance model in the era of Euclid and the SKA(Elsevier, 2021) Bengaly, Carlos; Clarkson, Chris; Kunz, Martin; Maartens, RoyWe perform null tests of the concordance model, using H (z) measurements that mimic next-generation surveys such as Euclid and the SKA. To this end, we deploy a non-parametric method, so that we make minimal assumptions about the fiducial cosmology as well as the statistical analysis. We produce simulations assuming different cosmological models in order to verify how well we can distinguish between their signatures. We find that SKA- and Euclid-like surveys should be able to discriminate sharply between the concordance and alternative dark energy models that are compatible with the Planck CMB data. We conclude that SKA and Euclid will be able to falsify the concordance model in a statistically significant way, if one of the benchmarks models represents the true Universe, without making assumptions about the underlying cosmology.Item Null tests of the cosmological constant using supernovae(American Physical Society, 2014) Yahya, Sahba; Seikel, Marina; Clarkson, Chris; Maartens, Roy; Smith, MathewThe standard concordance model of the Universe is based on the cosmological constant as the driver of accelerating expansion. This concordance model is being subjected to a growing range of inter-locking observations. In addition to using generic observational tests, one can also design tests that target the specific properties of the cosmological constant. These null tests do not rely on parametrizations of observables, but focus on quantities that are constant only if dark energy is a cosmological constant. We use supernova data in null tests that are based on the luminosity distance. In order to extract derivatives of the distance in a model-independent way, we use Gaussian Processes. We find that the concordance model is compatible with the Union 2.1 data, but the error bars are fairly large. Simulated datasets are generated for the DES supernova survey and we show that this survey will allow for a sharper null test of the cosmological constant if we assume the Universe is flat. Allowing for spatial curvature degrades the power of the null test.Item Probing beyond-Horndeski gravity on ultra-large scales(IOP Publishing Ltd, 2020) Duniya, Didam G.A.; Moloi, Teboho; Clarkson, ChrisThe beyond-Horndeski gravity has recently been reformulated in the dark energy paradigm — which has been dubbed, Unified Dark Energy (UDE). The evolution equations for the given UDE appear to correspond to a non-conservative dark energy scenario, in which the total energy-momentum tensor is not conserved. We investigate both the background cosmology and, the large-scale imprint of the UDE by probing the angular power spectrum of galaxy number counts, on ultra-large scales; taking care to include the full relativistic corrections in the observed overdensity. The background evolution shows that only an effective mass smaller than the Planck mass is needed in the early universe in order for predictions in the given theory to match current observational constraints. We found that the effective mass-evolution-rate parameter, which drives the evolution of the UDE, acts to enhance the observed power spectrum and, hence, relativistic effects (on ultra-large scales) by enlarging the UDE sound horizon.Item Probing beyond-Horndeski gravity on ultra-large scales(2020) Moloi, Teboho; Duniya, Didam; Clarkson, ChrisThe beyond-Horndeski gravity has recently been reformulated in the dark energy paradigm — which has been dubbed, Unified Dark Energy (UDE). The evolution equations for the given UDE appear to correspond to a non-conservative dark energy scenario, in which the total energy-momentum tensor is not conserved. We investigate both the background cosmology and, the large-scale imprint of the UDE by probing the angular power spectrum of galaxy number counts, on ultra-large scales; taking care to include the full relativistic corrections in the observed overdensity. The background evolution shows that only an effective mass smaller than the Planck mass is needed in the early universe in order for predictions in the given theory to match current observational constraints. We found that the effective mass-evolution-rate parameter, which drives the evolution of the UDE, acts to enhance the observed power spectrum and, hence, relativistic effects (on ultra-large scales) by enlarging the UDE sound horizon. Conversely, both the (beyond) Horndeski parameter and the kineticity act to diminish the observed power spectrum, by decreasing the UDE sound horizon. Our results show that, in a universe with UDE, a multi-tracer analysis will be needed to detect the relativistic effects in the large-scale structure. In the light of a multi-tracer analysis, the various relativistic effects hold the potential to distinguish different gravity models. Moreover, while the Doppler effect will remain significant at all epochs and, thus can not be ignored, the integrated Sachs-Wolfe, the time-delay and the potential (difference) effects, respectively, will only become significant at epochs near z = 3 and beyond, and may be neglected at late epochs. In the same vein, the Doppler effect alone can serve as an effective cosmological probe for the large-scale structure or gravity models, in the angular power spectrum — at all z.Item Reconstruction of dark energy and expansion dynamics using Gaussian processes(IOP Publishing, 2012) Seikel, Marina; Clarkson, ChrisAn important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space, as the errors found depend strongly on the parametrisation considered. We present a new non-parametric approach to reconstructing the history of the expansion rate and dark energy using Gaussian Processes, which is a fully Bayesian approach for smoothing data. We present a pedagogical introduction to Gaussian Processes, and discuss how it can be used to robustly differentiate data in a suitable way. Using this method we show that the Dark Energy Survey - Supernova Survey (DES) can accurately recover a slowly evolving equation of state to w = ±0.05 (95% CL) at z = 0 and ±0.25 at z = 0.7, with a minimum error of ±0.025 at the sweet-spot at z 0.16, provided the other parameters of the model are known. Errors on the expansion history are an order of magnitude smaller, yet make no assumptions about dark energy whatsoever.Item Recursion relations for gravitational lensing(Springer Nature, 2019) Clarkson, Chris; Normann, Ben DavidThe weak gravitational lensing formalism can be extended to the strong lensing regime by integrating a nonlinear version of the geodesic deviation equation. The resulting ‘roulette’ expansion generalises the notion of convergence, shear and flexion to arbitrary order. The independent coefficients of this expansion are screen space gradients of the optical tidal tensor which approximates to the usual lensing potential in the weak field limit. From lensed images, knowledge of the roulette coefficients can in principle be inverted to reconstruct the mass distribution of a lens. In this paper, we simplify the roulette expansion and derive a family of recursion relations between the various coefficients, generalising the Kaiser–Squires relations beyond the weak-lensing regime.Item Testing foundations of modern cosmology with SKA all-sky surveys(Proceedings of Science, 2014) Schwarz, Dominik J.; Bacon, David; Chen, Song; Clarkson, Chris; Huterer, Dragan; Kunz, Martin; Maartens, Roy; Raccanelli, Alvise; Rubart, Matthias; Starck, Jean-LucContinuum and HI surveys with the Square Kilometre Array (SKA) will allow us to probe some of the most fundamental assumptions of modern cosmology, including the Cosmological Principle. SKA all-sky surveys will map an enormous slice of space-time and reveal cosmology at superhorizon scales and redshifts of order unity. We illustrate the potential of these surveys and discuss the prospects to measure the cosmic radio dipole at high fidelity. We outline several potentially transformational tests of cosmology to be carried out by means of SKA all-sky surveys.]Item Testing homegeneity with Galaxy Star formation histories(IOP Publishing, 2013) Hoyle, Ben; Jimenez, Raul; Maartens, Roy; Heavens, Alan; Clarkson, Chris; Tojeiro, RitaObservationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past light cone, while observations take place on the light cone. The star formation history (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked luminous red galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal-area contiguous sky patches and 10 redshift slices (0.2 < z < 0.5), which correspond to 120 blocks of volume ∼0.04 Gpc3. Using the SFH in a time period that samples the history of the universe between look-back times 11.5 and 13.4 Gyr as a proxy for homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is no extra variance at all. At 95% credibility, there is no evidence of deviations larger than 5.8%.Item Wide-angle effects in multi-tracer power spectra with Doppler corrections(IOP Publishing, 2023) Paul, Pritha; Clarkson, Chris; Maartens, Roy. We examine the computation of wide-angle corrections to the galaxy power spectrum including redshift-space distortions and relativistic Doppler corrections, and also including multiple tracers with differing clustering, magnification and evolution biases. We show that the inclusion of the relativistic Doppler contribution, as well as radial derivative terms, are crucial for a consistent wide-angle expansion for large-scale surveys, both in the single and multi-tracer cases. We also give for the first time the wide-angle cross-power spectrum associated with the Doppler magnification-galaxy cross correlation, which has been shown to be a new way to test general relativity. In the full-sky power spectrum, the wide-angle expansion allows integrals over products of spherical Bessel functions to be computed analytically as distributional functions, which are then relatively simple to integrate over. We give for the first time a complete discussion and new derivation of the finite part of the divergent integrals of the form R ∞ 0 drrn j`(kr)j` 0(qr), which are necessary to compute the wide-angle corrections when a general window function is included. This facilitates a novel method for integrating a general analytic function against a pair of spherical Bessel functions.