Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Botha, Ryno"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterisation of natural radioactivity in Karoo Basin groundwater prior to shale gas exploration
    (University of the Western Cape, 2017) Botha, Ryno; Lindsay, R.; Newman, R.T.; Maleka, P.P.
    The prospect of unconventional shale-gas development in the Karoo Basin (South Africa) has created the need to obtain baseline data on natural radioactivity in Karoo groundwaters. The Karoo Basin groundwater radiological baseline developed through this study could serve as a reference to research potential future radiological contamination effects due to hydraulic fracturing. The major naturally occurring radioactive material (NORM) studied was radon (222Rn), in particular in-water activity concentrations; however, supplementary radium (226Ra and 228Ra) in-water activity concentrations and uranium (238U) in-water concentrations measurements were also made. A total of 53 aquifers across three provinces were sampled for groundwater and measured, with three measurement series from 2014 to 2016. The aquifers were categorized as shallow, mixed, or deep source. The radon-in-water baseline of the Karoo Basin can be characterised by a minimum of 0.6 ± 0.9 Bq/L, a maximum of 183 ± 18 Bq/L and mean of 41 ± 5 Bq/L. The radon-in-water levels from shallow sources (with water temperature < 20 °C) were systematically higher (40 Bq/L) than for deep sources (with water temperature > 20 °C). The natural fluctuations in radon-in-water levels were predominantly associated with shallow aquifers compared to almost none observed in the deep sources. The uranium in-water baseline can be characterised by a minimum of below detection level, a maximum of 41 μg/L, and the mean of 5.10 ± 0.80 μg/L. Similar to radon-in-water levels, uranium in-water levels for shallow sources were systematically higher than for deep sources. The limited (six aquifers) radium (228Ra and 226Ra) in-water activity-concentration measurement results were very low, with a maximum of 0.008 Bq/L (226Ra) and 0.015 Bq/L (228Ra). The 228Ra/226Ra ratio baseline were characterised by a minimum of 0.93, a mean of 3.3 ± 1.3, and a maximum of 6.5. The radium isotopes’ activity concentration ratio is an isotopic tracer for hydraulic fracturing wastewater. Pollution and contamination (radiological), due to unconventional shale gas development, in water resources has been noticed in the Marcellus Basin (United States). Consequently, developing and improving continuous baseline monitoring are of importance to study the environmental radiological effect of hydraulic fracturing.
  • Loading...
    Thumbnail Image
    Item
    Variability and interannual trends in the climatology of radon-222 at two Southern Hemisphere coastal baseline sites
    (University of the Western Cape, 2021) Botha, Ryno; Lindsay, Robert
    This thesis characterises and discusses two continuous coastal Southern Hemispheric (SH) atmospheric radon (222Rn) signals. Large-scale atmospheric circulation patterns are important components of the climate system implicated in driving catastrophic events such as extreme droughts and mega-wildfires and radon measurements at coastal sites provide valuable information on interactions of terrestrial and oceanic air masses on regional to hemispheric scales. The main collaborating SH atmospheric observatories in this study are located at Cape Grim (CGO, Tasmania, 1992-2017) and Cape Point (CPO, South Africa, 1999-2017). The radon signal from a high-altitude remote island oceanic site in the Northern Hemisphere Mauna Loa Observatory (MLO, Hawaii, 2004-2015) is also incorporated for comparison purposes. The CGO radon signal is the longest and most sensitive in current existence. A variety of statistical, spectral, trend, back-trajectory and trajectory density methods are utilized in this study to illuminate features of the datasets on multiple scales. Strongly skewed radon distributions occur, with a large number of events falling into a compact range of low values (corresponding to marine air-masses) and a smaller number of events spread over a wide range of high-radon values (continental air-masses). Making use of Fast Fourier Transform power spectral analysis, prominent periodicities are identified on diurnal and annual scales. Inter-annual variations in seasonal and diurnal radon and meteorological characteristics, indicating changes in the continental/oceanic atmospheric mixing state, are evident especially during the period from 2012 to 2017, perhaps associated with the strong El-Niño southern oscillation centred on 2015. A slow but systematic decline in CGO and CPO radon levels is evident over the dataset, associated with fewer continental and more marine air-masses impacting the coastal stations. The long-term trends observed in the atmospheric radon signal may indicate changes in SH circulation patterns over time, perhaps associated with climate change effects.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback