Browsing by Author "Blake, Chris"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Measurement of the evolving galaxy luminosity and mass function using clustering-based redshift inference(Monthly Notices of the Royal Astronomical Society, 2023) Cluver, Michelle E; Karademir, Geray S; Blake, Chris; Taylor, Edward N; Jarrett, Thomas H; Triani, Dian PWe develop a framework for using clustering-based redshift inference (cluster-z ) to measure the evolving galaxy luminosity function (GLF) and galaxy stellar mass function (GSMF) using Wide-field Infrared Survey Explorer W1 (3.4 μm) mid-infrared photometry and positions. We use multiple reference sets from the Galaxy And Mass Assembly survey, Sloan Digital Sky Survey and Baryon Oscillation Spectroscopic Survey. Combining the resulting cluster-z s allows us to enlarge the study area, and by accounting for the specific properties of each reference set, making best use of each reference set to produce the best overall result.Item Measuring redshift-space distortion with future SKA surveys(Proceedings of Science, 2014) Raccanelli, Alvise; Bull, Philip; Camera, Stefano; Bacon, David; Blake, Chris; Dore, Olivier; Ferreira, Pedro G.; Maartens, Roy; Santos, Mario G.; Viel, Matteo; Zhao, Gong-BoThe peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-ofsight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this short chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.