Browsing by Author "Bladergroen, Bernard Jan"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Development of FeCux/FeS/Graphite composite electrode materials for iron-based Alkaline batteries(Electrochemical Science Group, University of Belgrade, 2020) Tawonezvi, Tendai; Bladergroen, Bernard Jan; John, JoeIn an attempt to enhance the electrochemical performance of the iron-based electrode, an iron-core copper-shell nano-structured material was synthesized and incorporated with ferrous sulphide, and graphite additives. An electrically conductive nickel mesh as a current collector, coupled with a low-cost hot-pressing technique, was employed to formulate the electrodes. The ferrous and graphite integrated iron-core copper-shell nano-structured negative electrode was investigated for applications in Fe-based alkaline batteries energy storage. FeCu0.25/15%FeS/5%C composite electrode delivered a specific discharge capacity of 385 mAh g-1 an approximately 71% coulombic efficiency. The nominal specific capacity of the electrode exhibited negligible capacity degradation after 40 cycles. Ex-situ X-ray Diffraction characterisations and scanning electrode microscopy images of both the fresh and the discharged electrode surfaces show that particle arrangement was still intact after 40 cycles, with negligible particle agglomeration compared to the pure iron electrode surface which was marked with massive agglomeration.Item Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique(Elsevier, 2013) Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 o C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H /air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.Item Membrane electrode assemblies with low noble metal loadings for hydrogen production from solid polymer electrolyte water electrolysis(Elsevier, 2013) Su, Huaneng; Linkov, Vladimir; Bladergroen, Bernard JanHigh performance membrane electrode assemblies (MEAs) with low noble metal loadings (NMLs) were developed for solid polymer electrolyte (SPE) water electrolysis. The electro- chemical and physical characterization of the MEAs was performed by IeV curves, elec- trochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Even though the total NML was lowered to 0.38 mg cm-2, it still reached a high performance of 1.633 V at 2 A cm-2 and 80 o C, with IrO2 as anode catalyst. The influences of the ionomer content in the anode catalyst layer (CL) and the cell temperature were investigated with the purpose of optimizing the performance. SEM and EIS measurements revealed that the MEA with low NML has very thin porous cathode and anode CLs that get intimate contact with the electrolyte membrane, which makes a reduced mass transport limitation and lower ohmic resistance of the MEA. A short-term water electrolysis operation at 1 A cm-2 showed that the MEA has good stability: the cell voltage maintained at ~1.60 V without distinct degradation after 122 h operation at 80 o C and atmospheric pressure.Item Membrane module development for water recovery from humid gas(University of the Western Cape, 2020) Matthee, Francois; Bladergroen, Bernard JanOver the past 5 years, South Africa has been experiencing a severe drought. This has caused industrial and agricultural processes, to compete for a limited supply of water. Since the economy relies mostly on agricultural activities, water consumption by industrial processes is taking its toll. One of these processes is the introduction of wet flue gas desulphurization (FGD) treatment at Eskom coal fired power stations. This dissertation explores the possibility of using membrane technology as a means of water recovery after the coal combustion flue gas has been treated with wet FGD. A lab-scale permeance testing system was specially built and modified to have complete thermal control of the environment inside the system. The permeance testing system produced a gas, similar to that of a wet FGD treated flue gas, which was then tested. A tubular lab-scale membrane module was designed and produced for the permeance testing system. The permeance figures of both Nitrogen gas and water vapour were determined for the membrane used in module production. These figures coincided with figures provided by the supplier, which warranted successful permeance testing. After success of the lab-scale testing, the data was used to design and develop a pilot-scale membrane module. This module was designed to meet pre-determined requirements as set forth by the project team. Producing lab-scale membrane modules helped identify and address possible problems in pilot-scale module design. This lead to the successful design and construction of a pilot-scale membrane module that could be used to recover the water that is needed to run the wet FGD process.Item Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer(Elsevier, 2013) Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.Gas diffusion electrodes (GDEs) prepared with various polymer binders in their catalyst layers (CLs) were investigated to optimize the performance of phosphoric acid doped polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cells (HT-PEMFCs). The properties of these binders in the CLs were evaluated by structure characterization, electrochemical analysis, single cell polarization and durability test. The results showed that polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) are more attractive as CL binders than conventional PBI or Nafion binder. At ambient pressure and 160 o C, the maximum power density can reach w 0.61 W cm-2 (PTFE GDE), and the current density at 0.6 V is up to ca. 0.52 A cm-2 (PVDF GDE), with H2/air and a platinum loading of 0.5 mg cm-2 on these electrodes. Also, both GDEs showed good stability for fuel cell operation in a short term durability test.Item The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor(Elsevier, 2016) Baloyi, Liberty N.; North, Brian C.; Langmi, Henrietta W.; Bladergroen, Bernard Jan; Ojumu, Tunde V.Hydrogen as an energy carrier has the potential to decarbonize the energy sector. This work presents the application of a palladium-silver (PdeAg) membrane-based reactor. The membrane reactor which is made from PdeAg film supported by porous stainless steel (PSS) is evaluated for the production of hydrogen and the potential replacement of the current two-stage Water-Gas Shift (WGS) reaction by a single stage reaction. The permeability of a 20 mmPdeAg membrane reactor was examined at 320° C, 380° C and 430° C. The effect of continuous hydrogen exposure on the PdeAg membrane at high temperature and low temperature was examined to investigate the thermal stability and durability of the membrane. During continuous operation to determine thermal stability, the membrane reactor exhibited stable hydrogen permeation at 320° C for 120 h and unstable hydrogen permeation at 430° C was observed. For the WGS reaction, the reactor was loaded with Ferrochrome catalyst. The membrane showed the ability to produce high purity hydrogen, with a CO conversion and an H2 recovery of 84% and 88%, respectively. The membrane suffered from hydrogen embrittlement due to desorption and adsorption of hydrogen on the membrane surface. SEM analysis revealed cracks that occurred on the surface of the membrane after hydrogen exposure. XRD analysis revealed lattice expansion after hydrogen loading which suggests the occurrence of phase change from a-phase to the more brittle b-phase.Item Synthesis, characterisation and evaluation of IrO2 based binary metal oxide electrocatalysts for oxygen evolution reaction(Electochemical Society Inc., 2012) Felix, Cecil; Maiyalagan, Thandavarayan; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, VladimirIrO2, IrxRu1-xO2, IrxSnx-1O2 and IrxTax-1O2 (1 ≥ x ≥ 0.7) were synthesized, characterised and evaluated as electrocatalysts for the oxygen evolution reaction in solid polymer electrolyte electrolysers. The electrocatalysts were synthesised by adapting the Adams fusion method. The physical properties of the electrocatalysts were characterised by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. Electrochemical activity of the electrocatalysts toward the oxygen evolution reaction was evaluated by cyclic voltammetry and chronoamperometry. X-ray diffraction revealed no phase separation when RuO2 or SnO2 was introduced into the IrO2 lattice suggesting that solid solutions were formed. Transmission electron microscope analysis revealed nanosize particles for all synthesised metal oxides. Crystallinity increased with the addition of RuO2 and SnO2 while a suppression of crystal growth was observed with the addition of Ta2O5 to IrO2. Chronoamperometry revealed that the addition of all the secondary metal oxides to IrO2 resulted in improved catalytic performance. Ir0.7Ru0.3O2 was identified as the most promising electrocatalyst for the oxygen evolution reaction. Keywords: