Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bhuvanendran, Narayanamoorthy"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Improved bi-functional oxygen electrocatalytic performance of PteIr alloy nanoparticles embedded on MWCNT with Pt-enriched surfaces
    (Energy, 2020) Bhuvanendran, Narayanamoorthy
    Multi-walled carbon nanotube supported PteIr nanoparticles (PteIr/MWCNT) with different elemental ratios were synthesized by one-pot co-reduction approach under ambient conditions. The PteIr catalysts exhibit improved bi-functional activity towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) and its electrocatalytic performance was clearly established using different physiochemical characterization techniques. The PteIr composition of 2:1 has a higher electrochemical surface area (ECSA) of about 85.3 m2 /g compared to other compositions (3:1 and 1:1) and Pt/MWCNT due to the effect of particle size distribution. The improved ORR/OER activity was found to be 139.4 and 740 mA/mg, respectively, for PteIr(2:1)/MWCNT with the potential difference of 760 mV for oxygen bi-functional activity. Furthermore, PteIr(2:1)/MWCNT showed much better stability for ORR compared to other compositions and Pt/MWNCT catalysts, i.e., around 76% of its initial ECSA retained with <20 mV shift in half-wave potential was obtained even after 10,000 potential cycles in acidic medium. It is believed that the Pt enriched surface, amount of Ir content, induced electronic and geometric effects play a vital role on the electrocatalytic activity enhancement of PteIr(2:1)/MWNCT as effective bi-functional oxygen electrode.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback