Browsing by Author "Barron, Olivia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Catalyst Coated Membranes (CCMs) for polymerelectrolyte Membrane (PEM) fuel cells(University of the Western Cape, 2010) Barron, Olivia; Ji, Shan; Dept. of Chemistry; Faculty of ScienceThe main objective of this work it to produce membrane electrode assemblies (MEAs) that have improved performance over MEAs produced by the conventional manner, by producing highly efficient, electroactive, uniform catalyst layers with lower quantities of platinum electrocatalyst. The catalyst coated membrane (CCM) method was used to prepare the MEAs for the PEM fuel cell as it has been reported that this method of MEA fabrication can improve the performance of PEM fuel cells. The MEAs performances were evaluated using polarisation studies on a single cell. A comparison of polarisation curves between CCM MEAs and MEAs produced in the conventional manner illustrated that CCM MEAs have improved performance at high current densities (>800 mA/cm2).Item Gas diffusion electrodes for high temperature polymer electrolyte membrane fuel cells membrane electrode assemblies(University of the Western Cape, 2014) Barron, Olivia; Pasupathi, SivakumarThe need for simplified polymer electrolyte membrane fuel cell (PEMFCs) systems, which do not require extensive fuel processing, has led to increased study in the field of high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) applications. Although these HT-PEMFCs can operate with less complex systems, they are not without their own challenges; challenges which are introduced due to their higher operation temperature. This study aims to address two of the main challenges associated with HT-PEMFCs; the need for alternative catalyst layer (CL) ionomers and the prevention of excess phosphoric acid (PA) leaching into the CL. The first part of the study involves the evaluation of suitable proton conducting materials for use in the CL of high temperature membrane electrode assemblies (HT-MEAs), with the final part of the study focusing on development of a novel MEA architecture comprising an acid controlling region. The feasibility of the materials in HT-MEAs was evaluated by comparison to standard MEA configurations.