Browsing by Author "Bangira, Tsitsi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Remote Sensing Grassland Productivity Attributes: A Systematic Review(MDPI, 2023) Bangira, Tsitsi; Mutanga, Onisimo; Sibanda, Mbulisi; Dube, Timothy; Mabhaudhi, TafadzwanasheA third of the land on the Earth is composed of grasslands, mainly used for forage. Much effort is being conducted to develop tools to estimate grassland productivity (GP) at different extents, concentrating on spatial and seasonal variability pertaining to climate change. GP is a reliable indicator of how well an ecosystem works because of its close connection to the ecological system equilibrium. The most commonly used proxies of GP in ecological studies are aboveground biomass (AGB), leaf area index (LAI), canopy storage capacity (CSC), and chlorophyll and nitrogen content. Grassland science gains much information from the capacity of remote sensing (RS) techniques to calculate GP proxies. An overview of the studies on RS-based GP prediction techniques and a discussion of current matters determining GP monitoring are critical for improving future GP prediction performance. A systematic review of articles published between 1970 and October 2021 (203 peer-reviewed articles from Web of Science, Scopus, and DirectScience databases) showed a trend in the choice of the sensors, and the approaches to use are largely dependent on the extent of monitoring and assessment. Notably, all the reviewed articles demonstrate the growing demand for high-resolution sensors, such as hyperspectral scanners and computationally efficient image-processing techniques for the high prediction accuracy of GP at various scales of application. Further research is required to attract the synthesis of optical and radar data, multi-sensor data, and the selection of appropriate techniques for GP prediction at different scales. Mastering and listing major uncertainties associated with different algorithms for the GP prediction and pledging to reduce these errors are critical.Item A systematic review on the use of remote sensing technologies in quantifying grasslands ecosystem services(2022) Masenyama, Anita; Mutanga, Onisimo; Dube, Timothy; Bangira, TsitsiThe last decade has seen considerable progress in scientific research on vegetation ecosystem services. While much research has focused on forests and wetlands, grasslands also provide a variety of different provisioning, supporting, cultural, and regulating services. With recent advances in remote sensing technology, there is a possibility that Earth observation data could contribute extensively to research on grassland ecosystem services. This study conducted a systematic review on progress, emerging gaps, and opportunities on the application of remote sensing technologies in quantifying all grassland ecosystem services including those that are related to water. The contribution of biomass, Leaf Area Index (LAI), and Canopy Storage Capacity (CSC) as water-related ecosystem services derived from grasslands was explored. Two hundred and twenty-two peer-reviewed articles from Web of Science, Scopus, and Institute of Electrical and Electronics Engineers were analyzed. About 39% of the studies were conducted in Asia with most of the contributions coming from China while a few studies were from the global south regions such as Southern Africa. Overall, forage provision, climate regulation, and primary production were the most researched grassland ecosystem services in the context of Earth observation data applications. About 39 Earth observation sensors were used in the literature to map grassland ecosystem services and MODIS had the highest utilization frequency. The most widely used vegetation indices for mapping general grassland ecosystem services in literature included the red and near-infrared sections of the electromagnetic spectrum. Remote sensing algorithms used within the retrieved literature include process-based models, machine learning algorithms, and multivariate techniques. For water-related grassland ecosystem services, biomass, CSC, and LAI were the most prominent proxies characterized by remotely sensed data for under-standing evapotranspiration, infiltration, run-off, soil water availability, groundwater restoration and surface water balance. An understanding of such hydrological processes is crucial in providing insights on water redistribution and balance within grassland ecosystems which is important for water management.