Browsing by Author "Arotiba, Omotayo A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Correction: Baker, P. et al. electrochemical aptasensor for endocrine disrupting 17β-estradiol based on a poly(3,4-ethylenedioxylthiopene)-gold nanocomposite platform. Sensors 2010, 10, 9872-9890(MDPI, 2011) Olowu, Rasaq A.; Arotiba, Omotayo A.; Mailu, Stephen N.; Waryo, Tesfaye T.; Baker, Priscilla; Iwuoha, Emmanuel I.Herewith please find corrected structures for Figure 8 in our paper published in Sensors in 2010.Item Electrochemical aptasensor for endocrine disrupting 17β-estradiol based on a poly(3,4-ethylenedioxylthiopene)-gold nanocomposite platform(MDPI, 2010) Olowu, Rasaq A.; Mailu, Stephen N.; Waryo, Tesfaye T.; Baker, Priscilla; Iwuoha, Emmanuel I.; Arotiba, Omotayo A.A simple and highly sensitive electrochemical DNA aptasensor with high affinity for endocrine disrupting 17β-estradiol, was developed. Poly(3,4-ethylenedioxylthiophene) (PEDOT) doped with gold nanoparticles (AuNPs) was electrochemically synthesized and employed for the immobilization of biotinylated aptamer towards the detection of the target. The diffusion coefficient of the nanocomposite was 6.50 × 10−7 cm2 s−1, which showed that the nanocomposite was highly conducting. Electrochemical impedance investigation also revealed the catalytic properties of the nanocomposite with an exchange current value of 2.16 × 10−4 A, compared to 2.14 × 10−5 A obtained for the bare electrode. Streptavidin was covalently attached to the platform using carbodiimide chemistry and the aptamer immobilized via streptavidin—biotin interaction. The electrochemical signal generated from the aptamer–target molecule interaction was monitored electrochemically using cyclic voltammetry and square wave voltammetry in the presence of [Fe(CN)6]−3/−4 as a redox probe. The signal observed shows a current decrease due to interference of the bound 17β-estradiol. The current drop was proportional to the concentration of 17β-estradiol. The PEDOT/AuNP platform exhibited high electroactivity, with increased peak current. The platform was found suitable for the immobilization of the DNAaptamer. The aptasensor was able to distinguish 17β-estradiol from structurally similar endocrine disrupting chemicals denoting its specificity to 17β-estradiol. The detectable concentration range of the 17β-estradiol was 0.1 nM–100 nM, with a detection limit of 0.02 nM.Item An electrochemical DNA biosensor developed on a nanocomposite platform of gold and poly(propyleneimine) dendrimer(MDPI, 2008) Arotiba, Omotayo A.; Owino, Joseph; Songa, Everlyne; Hendricks, Nicolette; Waryo, Tesfaye T.; Jahed, Nazeem; Baker, Priscilla; Iwuoha, Emmanuel I.An electrochemical DNA nanobiosensor was prepared by immobilization of a 20mer thiolated probe DNA on electro-deposited generation 4 (G4) poly(propyleneimine) dendrimer (PPI) doped with gold nanoparticles (AuNP) as platform, on a glassy carbon electrode (GCE). Field emission scanning electron microscopy results confirmed the codeposition of PPI (which was linked to the carbon electrode surface by C-N covalent bonds) and AuNP ca 60 nm. Voltammetric interrogations showed that the platform (GCE/PPI-AuNP) was conducting and exhibited reversible electrochemistry (E°′ = 235 mV) in pH 7.2 phosphate buffer saline solution (PBS) due to the PPI component. The redox chemistry of PPI was pH dependent and involves a two electron, one proton process, as interpreted from a 28 mV/pH value obtained from pH studies. The charge transfer resistance (Rct) from the electrochemical impedance spectroscopy (EIS) profiles of GCE/PPI-AuNP monitored with ferro/ferricyanide (Fe(CN)6 3-/4-) redox probe, decreased by 81% compared to bare GCE. The conductivity (in PBS) and reduced Rct (in Fe(CN)6 3-/4-) values confirmed PPI-AuNP as a suitable electron transfer mediator platform for voltammetric and impedimetric DNA biosensor. The DNA probe was effectively wired onto the GCE/PPI-AuNP via Au-S linkage and electrostatic interactions. The nanobiosensor responses to target DNA which gave a dynamic linear range of 0.01 - 5 nM in PBS was based on the changes in Rct values using Fe(CN)6 3-/4- redox probe.Item Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of Aflatoxin B1(MDPI, 2008) Owino, Joseph H.O.; Arotiba, Omotayo A.; Hendricks, Nicolette; Songa, Everlyne; Jahed, Nazeem; Waryo, Tesfaye T.; Ngece, Rachel F.; Baker, Priscilla; Iwuoha, Emmanuel I.An aflatoxin B1 (AFB1) electrochemical immunosensor was developed by the immobilisation of aflatoxin B1-bovine serum albumin (AFB1-BSA) conjugate on a polythionine (PTH)/gold nanoparticles (AuNP)-modified glassy carbon electrode (GCE). The surface of the AFB1-BSA conjugate was covered with horseradish peroxidase (HRP), in order to prevent non-specific binding of the immunosensors with ions in the test solution. The AFB1 immunosensor exhibited a quasi-reversible electrochemistry as indicated by a cyclic voltammetric (CV) peak separation (ΔEp) value of 62 mV. The experimental procedure for the detection of AFB1 involved the setting up of a competition between free AFB1 and the immobilised AFB1-BSA conjugate for the binding sites of free anti-aflatoxin B1 (anti-AFB1) antibody. The immunosensor’s differential pulse voltammetry (DPV) responses (peak currents) decreased as the concentration of free AFB1 increased within a dynamic linear range (DLR) of 0.6 - 2.4 ng/mL AFB1 and a limit of detection (LOD) of 0.07 ng/mL AFB1. This immunosensing procedure eliminates the need for enzyme-labeled secondary antibodies normally used in conventional ELISA–based immunosensors.