Browsing by Author "An, Fang Xia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item An ALMA survey of the brightest sub-millimetre sources in the SCUBA-2–COSMOS field(Oxford University Press, 2020) An, Fang Xia; Simpson, J. M.; Smail, IanABSTRACT We present an ALMA study of the ∼180 brightest sources in the SCUBA-2 850-μm map of the COSMOS field from the S2COSMOS survey, as a pilot study for AS2COSMOS – a full survey of the ∼1000 sources in this field. In this pilot study, we have obtained 870-μm continuum maps of an essentially complete sample of the brightest 182 sub-millimetre sources (S850μm> 6.2 mJy) in COSMOS. Our ALMA maps detect 260 sub-millimetre galaxies (SMGs) spanning a range in flux density of S870μm = 0.7–19.2 mJy.Item An ALMA survey of the SCUBA-2 CLS UDS field: Physical properties of 707 sub-millimetre galaxies(Oxford University Press, 2020) An, Fang Xia; Smail, Ian; Swinbank, A. M.We analyse the physical properties of a large, homogeneously selected sample of ALMA-located sub-millimetre galaxies (SMGs). This survey, AS2UDS, identified 707 SMGs across the ∼1 deg2 field, including ∼17 per cent, which are undetected at K ≳ 25.7 mag. We interpret their ultraviolet-to-radio data using MAGPHYS and determine a median redshift of z = 2.61 ± 0.08 (1σ range of z = 1.8–3.4) with just ∼6 per cent at z > 4. Our survey provides a sample of massive dusty galaxies at z ≳ 1, with median dust and stellar masses of Md = (6.8 ± 0.3) × 108 M⊙ (thus, gas masses of ∼1011 M⊙) and M* = (1.26 ± 0.05) × 1011 M⊙.Item Multi-wavelength properties of radio- and machine-learning-identified counterparts to submillimeter sources in s2cosmos(The Astrophysical Journal, 2019) An, Fang XiaWe identify multi-wavelength counterparts to 1147 submillimeter sources from the S2COSMOS SCUBA-2 survey of the COSMOS field by employing a recently developed radio+machine-learning method trained on a large sample of Atacama Large Millimeter/submillimeter Array (ALMA)–identified submillimeter galaxies (SMGs), including 260 SMGs identified in the AS2COSMOS pilot survey. In total, we identify 1222 optical/near-infrared (NIR)/radio counterparts to the 897 S2COSMOS submillimeter sources with S850 > 1.6 mJy, yielding an overall identification rate of (78 ± 9)%. We find that (22 ± 5)% of S2COSMOS sources have multiple identified counterparts. We estimate that roughly 27% of these multiple counterparts within the same SCUBA-2 error circles very likely arise from physically associated galaxies rather than line-of-sight projections by chance. The photometric redshift of our radio+machine-learning-identified SMGs ranges from z = 0.2 to 5.7 and peaks at z = 2.3 ± 0.1.