Browsing by Author "Adriaenssens, Evelien M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item High-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of Antarctic soils(American Society for Microbiology, 2014) Zablocki, Olivier; van Zyl, Lonnie; Adriaenssens, Evelien M.; Rubagotti, Enrico; Tuffin, Marla; Cary, Stephen Craig; Cowan, Donald A.The metaviromes of two distinct Antarctic hyperarid desert soil communities have been characterized. Hypolithic communities, cyanobacterium-dominated assemblages situated on the ventral surfaces of quartz pebbles embedded in the desert pavement, showed higher virus diversity than surface soils, which correlated with previous bacterial community studies. Prokaryotic viruses (i.e., phages) represented the largest viral component (particularly Mycobacterium phages) in both habitats, with an identical hierarchical sequence abundance of families of tailed phages (Siphoviridae>Myoviridae>Podoviridae). No archaeal viruses were found. Unexpectedly, cyanophages were poorly represented in both metaviromes and were phylogenetically distant from currently characterized cyanophages. Putative phage genomes were assembled and showed a high level of unaffiliated genes, mostly from hypolithic viruses. Moreover, unusual gene arrangements in which eukaryotic and prokaryotic virus-derived genes were found within identical genome segments were observed. Phycodnaviridae and Mimiviridae viruses were the second-mostabundant taxa and more numerous within open soil. Novel virophage-like sequences (within the Sputnik clade) were identified. These findings highlight high-level virus diversity and novel species discovery potential within Antarctic hyperarid soils and may serve as a starting point for future studies targeting specific viral groups.Item Metaviromics of namib desert salt pans: a novel lineage of haloarchaeal salterproviruses and a rich source of ssDNA viruses(MDPI, 2016) Adriaenssens, Evelien M.; van Zyl, Leonardo JoaquimViral communities of two different salt pans located in the Namib Desert, Hosabes and Eisfeld, were investigated using a combination of multiple displacement amplification of metaviromic DNA and deep sequencing, and provided comprehensive sequence data on both ssDNA and dsDNA viral community structures. Read and contig annotations through online pipelines showed that the salt pans harbored largely unknown viral communities. Through network analysis, we were able to assign a large portion of the unknown reads to a diverse group of ssDNA viruses. Contigs belonging to the subfamily Gokushovirinae were common in both environmental datasets. Analysis of haloarchaeal virus contigs revealed the presence of three contigs distantly related with His1, indicating a possible new lineage of salterproviruses in the Hosabes playa. Based on viral richness and read mapping analyses, the salt pan metaviromes were novel and most closely related to each other while showing a low degree of overlap with other environmental viromes.Item Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee(Springer, 2018) Adriaenssens, Evelien M.; Wittmann, Johannes; Kuhn, Jens H.; van Zyl, Leonardo J.The prokaryotic virus community is represented at the International Committee on Taxonomy of Viruses (ICTV) by the Bacterial and Archaeal Viruses Subcommittee. Since our last report [5], the committee composition has changed, and a large number of taxonomic proposals (TaxoProps) were submitted to the ICTV Executive Committee (EC) for approval.