Researchers in Physics
Permanent URI for this community
Browse
Browsing by Author "Ferreira, Pedro G."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cosmology on the largest scales with the SKA(Proceedings of Science, 2014) Camera, Stefano; Raccanelli, Alvise; Bull, Philip; Bertacca, Daniele; Chen, Xuelei; Ferreira, Pedro G.; Kunz, Martin; Maartens, Roy; Mao, Yi; Santos, Mario G.; Shapiro, Paul R.; Viel, Matteo; Xug, YidongThe study of the Universe on ultra-large scales is one of the major science cases for the Square Kilometre Array (SKA). The SKA will be able to probe a vast volume of the cosmos, thus representing a unique instrument, amongst next-generation cosmological experiments, for scrutinising the Universe’s properties on the largest cosmic scales. Probing cosmic structures on extremely large scales will have many advantages. For instance, the growth of perturbations is well understood for those modes, since it falls fully within the linear régime. Also, such scales are unaffected by the poorly understood feedback of baryonic physics. On ultra-large cosmic scales, two key effects become significant: primordial non-Gaussianity and relativistic corrections to cosmological observables. Moreover, if late-time acceleration is driven not by dark energy but by modifications to general relativity, then such modifications should become apparent near and above the horizon scale. As a result, the SKA is forecast to deliver transformational constraints on non-Gaussianity and to probe gravity on super-horizon scales for the first time.Item Cosmology with a SKA HI intensity mapping survey(Proceedings of Science, 2014) Santos, Mario G.; Bull, Philip; Alonso, David; Camera, Stefano; Ferreira, Pedro G.; Bernardi, Gianni; Maartens, Roy; Viel, Matteo; Villaescusa-Navarro, Francisco; Abdalla, Filipe B.; Jarvis, Matt; Metcalf, R. Benton; Pourtsidou, A.; Wolz, LauraHI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum – thus determining the expansion and growth history of the Universe – these surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal.Item Measuring redshift-space distortion with future SKA surveys(Proceedings of Science, 2014) Raccanelli, Alvise; Bull, Philip; Camera, Stefano; Bacon, David; Blake, Chris; Dore, Olivier; Ferreira, Pedro G.; Maartens, Roy; Santos, Mario G.; Viel, Matteo; Zhao, Gong-BoThe peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-ofsight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this short chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.