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ABSTRACT
Despite being designed as an interferometer, the MeerKAT radio array (a Square Kilometre Array pathfinder) can also be used in
autocorrelation (‘single-dish’) mode, where each dish scans the sky independently. Operating in this mode allows extremely high
survey speeds to be achieved, albeit at significantly lower angular resolution. We investigate the recovery of the baryon acoustic
oscillation (BAO) scale from multipoles of the redshift-space correlation function as measured by a low angular resolution
21 cm intensity mapping survey of this kind. Our approach is to construct an analytic model of the multipoles of the correlation
function and their covariance matrix that includes foreground contamination and beam resolution effects, which we then use to
generate an ensemble of mock data vectors from which we attempt to recover the BAO scale. In line with previous studies, we
find that recovery of the transverse BAO scale α⊥ is hampered by the strong smoothing effect of the instrumental beam with
increasing redshift, while the radial scale α� is much more robust. The multipole formalism naturally incorporates transverse
information when it is available however, and so there is no need to perform a radial-only analysis. In particular, the quadrupole
of the correlation function preserves a distinctive BAO ‘bump’ feature even for large smoothing scales. We also investigate
the robustness of BAO scale recovery to beam model accuracy, severity of the foreground removal cuts, and accuracy of the
covariance matrix model, finding in all cases that the radial BAO scale can be recovered in an accurate, unbiased manner.

Key words: methods: data analysis – methods: statistical – cosmology: observations – large-scale structure of Universe – radio
lines: galaxies.

1 IN T RO D U C T I O N

As a mode of tracing the Universe’s large-scale structure, neutral
hydrogen (H I) intensity mapping (IM) will likely be unmatched in
its capacity to survey the matter distribution of very large volumes
efficiently. Rather than restricting attention to individual sources,
the IM technique produces a 3D image of the total intensity from
the combination of all objects that are found within each resolution
element, or voxel. The H I line makes an excellent target for this
method in cosmology due to its ubiquity; being found within galaxies
as shielded clumps at late times. The hyperfine spin-flip transition
of neutral hydrogen that occurs at λ � 21.1 cm allows distance
measurements to made be with high fidelity, since they are deduced
directly from the line’s redshift, with accuracy only dependent on
the frequency resolution of the observing radio telescope. Under
the assumption that H I traces the underlying cosmological matter
distribution with some associated bias, this method makes it possible
to survey large swathes of the matter distribution out to very high
redshift in a comparatively short observing time (Bharadwaj, Nath &
Sethi 2000; Battye, Davies & Weller 2004; McQuinn et al. 2005;
Mao et al. 2008; Chang et al. 2007; Wyithe & Loeb 2007; Loeb &
Wyithe 2008; Pritchard & Loeb 2008; Peterson et al. 2009; Bagla,
Khandai & Datta 2009; Seo et al. 2009; Ansari et al. 2012). During
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epochs when the neutral hydrogen abundance/ionization fraction is
evolving rapidly, 21 cm IM can also be used to probe the various
astrophysical processes that contribute to ionizing the intergalactic
medium (Madau, Meiksin & Rees 1997; Barkana & Loeb 2005a, b;
Mesinger & Furlanetto 2007; Pritchard & Loeb 2008; Pober et al.
2014).

Different observing strategies can be deployed to measure 21 cm
intensity maps at various epochs, each with their own set of
advantages and drawbacks. Interferometric experiments typically
allow smaller angular scales to be accessed, with a maximum
resolution set by the largest separation between dishes in the array.
Often constructed as dense arrays, and used in a tracking or drift-
scan mode, interferometers are advantageous in terms of their
instrumental stability, but sample only a subset of the available
angular Fourier modes, and tend to suffer from strong chromatic
effects that can mix bright foreground contamination into otherwise
signal-dominated modes. Alternatively, observations can be carried
out in autocorrelation or ‘single-dish’ mode, where each receiver
in the array independently measures the total power signal at
each pointing. Autocorrelation observations have been proposed
as a way of accessing the largest cosmological scales, which are
typically resolved out by interferometers, as well as for improving
the sensitivity and survey speed of sparse arrays (Battye et al. 2012b;
Bull et al. 2015b; Santos et al. 2017). Their angular resolution is
limited by the dish size, which for modern multidish arrays with
∼15m dishes translates to an angular resolution of order a degree at z
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∼ 1. While their response is less chromatic than for an interferometer,
autocorrelation instruments suffer from correlated (1/f) noise, and so
must typically scan rapidly across the sky in order to avoid striping
artefacts. This results in reduced stability of the system, leading to
additional time-dependent systematic effects that must be filtered out
of the data before maps are constructed.

While a wide variety of 21 cm IM surveys are currently either
underway or in the advanced stages of planning and construction, a
definitive detection of the cosmological 21 cm signal is yet to have
been achieved at either high or low redshift, with the exception
of detections in cross-correlation with optical galaxy surveys by
the Green Bank Telescope (GBT) (Wolz et al. 2021) and Parkes
(Anderson et al. 2018). The reason for this is largely due to the diffi-
culty of calibrating and processing 21 cm data with sufficient fidelity;
observations are dominated by foreground contamination from our
Galaxy and extragalactic sources that are in excess of three orders
of magnitude brighter than the expected cosmological signal (Oh &
Mack 2003; Santos, Cooray & Knox 2004), necessitating extremely
precise instrumental calibration that strongly suppresses the leakage
of foreground power into signal-dominated modes. It is possible to
make significant headway in the removal of foregrounds, as they are
expected to be smooth functions of frequency that can in principle
be filtered out with only a small loss in the recovered cosmological
signal (Wang et al. 2005; Liu et al. 2009; Petrovic & Oh 2010;
Liu & Tegmark 2011; Wolz et al. 2013, 2015; Alonso et al. 2014b;
Shaw et al. 2014; Cunnington et al. 2019; Soares et al. 2021). This
is complicated by the chromaticity of the instrumental beam effect
however, which is in general a non-trivial 2D sensitivity function
that changes with frequency and receiver geometry. In the single-
dish configuration, the beam function is convolved with the observed
intensity field and produces a frequency-dependent smoothing effect
that not only dampens features at or below the scale of the beam size,
but also modulates the foregrounds, resulting in foreground power
being scattered to Fourier modes at higher wavenumbers (Santos et al.
2004; Jelić et al. 2008; Chapman et al. 2012; Villaescusa-Navarro,
Alonso & Viel 2017; Asad et al. 2019; Matshawule et al. 2020). In
interferometry, the chromatic beam instead acts as a window function
on the intensity field, and has significant interaction with foreground
removal algorithms (Liu, Parsons & Trott 2014; Choudhuri et al.
2020; Hothi et al. 2020). Nevertheless, advances in calibration
and signal filtering are gradually improving measurements to the
point that positive detections of the cosmological 21 cm signal are
anticipated in the coming years without the need for cross-correlation
(McKinley et al. 2018; Thyagarajan et al. 2020; Wang et al. 2020).

In this paper, we consider the effects of foreground contamination
and beam smoothing on the recovery of one of the key cosmological
distance indicators – the baryon acoustic oscillation (BAO) scale –
in autocorrelation intensity maps of the kind that will be measured
by the MeerKAT radio array. The BAOs are acoustic waves in the
pre-recombination photon–baryon plasma driven by gravitational
interaction with dark matter and its own radiation pressure. Waves
at the scale of the sound horizon froze into the matter distribution
at the time of recombination, leaving a strong imprint that we are
able to detect in the 2pt correlation function, the feature appearing
as a local maximum at approximately 100 h−1 Mpc. Measurements
of the cosmic microwave background constrain the sound horizon
scale, allowing the BAO feature to be used as a cosmological
‘standard ruler’ (Eisenstein, Hu & Tegmark 1998) that can be used
to derive constraints on the Hubble parameter, the angular diameter
distance, and also the growth rate through the effects of redshift-space
distortions (RSDs). The BAO scale is well within the linear regime
and stands out from the background continuum in the correlation

function, and so it is difficult to confuse with systematic effects
(Eisenstein et al. 2007; Crocce & Scoccimarro 2008; Padmanabhan &
White 2009). This robustness to systematics is what makes BAO an
optimal target for initial applications of the 21 cm IM method as the
technique advances in efficacy.

The BAO scale has been measured variously in galaxy clustering
surveys (Cole et al. 2005; Eisenstein et al. 2005; Blake et al. 2007;
Anderson et al. 2013; Alam et al. 2016; Slepian et al. 2016; Beutler
et al. 2017), the Ly α forest (Font-Ribera et al. 2014; Delubac
et al. 2015), and voids (Liang et al. 2015; Kitaura et al. 2016).
The precision of these measurements can often be further boosted
by using algorithms that reconstruct the linear BAO peak using
nonlinear density field information (Eisenstein, Seo & White 2006;
Padmanabhan et al. 2012; Nikakhtar, Sheth & Zehavi 2021). 21 cm
IM surveys have the potential to effectively ‘complete’ the task of
BAO measurement, as they can in principle measure the BAO scale
over the full redshift range out to the Epoch of Reionization (EoR; z

� 6), and over almost the full sky (Bull et al. 2015a,b; Obuljen et al.
2017; Bandura et al. 2019).

In the coming decade, the Square Kilometre Array1 (SKAO) will
be able to measure the 21 cm cosmological signal at multiple stages of
cosmic history using the autocorrelation technique. The SKAO’s Mid
telescope is a multidish radio array that will soon begin construction
in the Karoo desert of South Africa. Part of the Mid telescope will
comprise of MeerKAT, a 64-dish array that is already operational on
the SKAO site (Santos et al. 2017). Combined with a low-frequency
array sited in Australia, SKAO will eventually have the capacity
to make very high-resolution maps of the 21 cm line from z � 0
all the way out to z � 27, well past the EoR and into the Cosmic
Dawn, where it has the potential to spatially resolve bubble structures
around the very first stars and galaxies. Though the instrument will
have unprecedented raw sensitivity, the data analysis for this survey
represents an exceptional calibration challenge (Wang et al. 2020).

In this paper we seek to understand how instrumental beam
smoothing and foreground filtering will affect the observed 2D
correlation function and its covariance in the case of the MeerKLASS
survey, a 4000 deg2, 4000 h precursor survey in the L-band (900–
1670 MHz , 0 ≤ z ≤ 0.57) with MeerKAT (Santos et al. 2017). In this
work, we will consider a single redshift band centred at z = 0.39 that
avoids surrounding radio frequency interference (RFI) contaminated
regions. A second band at lower redshift has also been observed by
MeerKAT (Wang et al. 2020), but we ignore it here as it covers too
small a volume. In particular, we wish to assess how recovery of
the BAO feature might proceed under various analysis assumptions,
with the goal of identifying a viable strategy for a first detection with
this instrument. Instead of performing a computationally expensive
analysis using simulations of the full survey, we use a partially
analytic approach in which the analytic models for the signal and
covariance are used to generate noisy realizations of the observed
21 cm correlation function under different analysis assumptions.
We then perform a simulated analysis on these mock data using a
combination of least-squares model fitting and Monte Carlo Markov
Chain (MCMC) analysis.

The recovery of the BAO feature in an SKAO-like 21 cm autocor-
relation survey has been studied previously. Most analyses have taken
a purely Fourier-space approach (e.g. Bull et al. 2015b; Soares et al.
2021), in which models for the 2D redshift-space power spectrum
can be fitted directly to the data. While this is a powerful approach,
careful handling of systematic effects and survey window functions

1https://www.skatelescope.org/
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Figure 1. The linear power spectrum and resulting monopole of the 2pt
correlation function, ξ0(r), shown with and without the effects of the
MeerKAT beam response at z = 0.3915 (Rbeam = 16.9 Mpc). The BAO
wiggles are significantly damped, and the corresponding BAO peak feature
in the correlation function is smoothed.

is required in order to avoid mode-coupling and subsequent leak-
age/scattering of foreground power outside of nominally foreground-
contaminated regions. This adds extra complexity to the analysis.
Instead, we focus on the redshift-space correlation function as a
slightly more conservative approach to obtaining an initial detection.

This paper is organized as follows. In Section 2, we describe our
modelling of the multipoles of the 21 cm correlation function in the
presence of realistic instrumental beam effects and a foreground cut.
We also derive an analytic covariance model for the multipoles in
the presence of these effects. In Section 3, we describe our analysis
methods, including our specific assumptions about the MeerKAT
configuration and the function fitting and BAO recovery techniques
that we have used. In Section 4, we present our results for the
correlation function and covariance matrix in realistic scenarios
for MeerKAT, and the results of fits aimed at identifying the best
analysis choices for the MeerKLASS survey. Section 5 contains our
conclusions.

2 TH E 2 1 C M C O R R E L AT I O N FU N C T I O N A N D
I T S C OVA R I A N C E

The 21 cm correlation function was studied by Villaescusa-Navarro
et al. (2017), who showed that the transverse smoothing effect due
to the instrumental beam effectively washes out the BAO feature
in the monopole of the correlation function at all but the lowest
redshifts for an instrument like MeerKAT, making it impossible to
disentangle from the smooth continuum of the correlation function.
Fig. 1 shows this effect for a MeerKAT-like beam response on the
linear power spectrum and the 2pt correlation function at z = 0.3915.
Instead, they advocate for a line-of-sight only analysis, averaging out
the transverse modes in Fourier space to form a 1D (k�-only) power
spectrum. While this necessarily destroys any residual information
about the BAO scale in the transverse direction, the BAO feature
remains distinctive in the resulting 1D power spectrum. We adopt
an alternative approach that strictly only uses the redshift-space
correlation function, decomposing it into multipoles in an attempt to
preserve as much information about the BAO scale as possible. While
the transverse modes are heavily smoothed by the beam response,
they still contain some useful information, which it is possible to
extract with appropriate beam modelling. Importantly, we derive
an analytic model for the covariance matrix of the monopole and
quadrupole of the redshift-space 21 cm correlation function in the
presence of both realistic beam smoothing and foreground removal
systematics, allowing us to optimize the recovery of information.

In this section, we derive analytic expressions for the redshift-
space 21 cm correlation function, its multipoles, and their covari-
ance, including the effects of RSDs, the instrumental beam, and a
foreground cut on line-of-sight (k�) modes. This extends well-known
results for galaxy surveys that include the effects of RSDs only.
Despite the added complications, we find that the 21 cm correlation
function can be calculated in a relatively inexpensive way via
this multipole expansion, and present an implementation (including
public code) that uses FFTLog to speed up the calculation.

2.1 The 2D correlation function

We consider a scenario in which the anisotropic effects of the
instrumental beam and foreground cut respect azimuthal symmetry
around the line-of-sight direction, so that we can work in a 2D
(transverse and radial) coordinate system, making use of the flat-sky,
distant observer approximation. Our scale of interest, the BAO scale,
falls at approximately 1 deg, and corrections to this approximation
are expected to be at the sub-0.1 per cent level in this redshift range
(see, e.g. Matthewson & Durrer 2021). Under these conditions, the
2D correlation function as a function of components of the comoving
separation (r⊥, r�) is related to the 2D power spectrum as a function
of wavenumbers (k⊥, k�) by a Fourier transform. We take an isotropic
model of the power spectrum P(k), and denote the entire anisotropic
modulation of the power spectrum, i.e. the effects of RSD, the beam,
and foreground cut, as a function F(k, ν), such that

Pobs(k, ν) = F (k, ν)P (k), (1)

where ν is a direction cosine defined below. Note that we will
define F to include all of the tracer-dependent contributions to the
observed signal, which in the case of 21 cm IM will include a H I

bias term and an overall brightness temperature. Explicit models
for the anisotropic modulation are given in Section 3. We define
the telescope pointing, or line-of-sight, direction to be n̂, and the
real-space separation unit vector pointing radially outwards from the
centre of the survey volume to be r̂. For the direction cosine between
the telescope pointing and the separation vector we use the symbol
μ ≡ r̂ · n̂. The harmonic-space unit wave vector, which is the Fourier
conjugate to r̂, is denoted by k̂, and the direction cosine between
the telescope pointing and the k-mode is ν ≡ k̂ · n̂. To be clear, μ

is the direction cosine between the telescope pointing and a given
real-space separation vector, and ν is the direction cosine between
the telescope pointing and a given wavevector. In this notation, the
anisotropic correlation function is given by the Fourier transform of
the total power spectrum,

ξ (r, μ) = 1

(2π )3

∫
d3kF (k, ν)P (k)eik·r. (2)

Next, we substitute in the plane wave expansion,

eik·r =
∞∑

�=0

i�(2� + 1)P�(k̂ · r̂)j�(kr), (3)

where P�(x) and j�(x) are the Legendre polynomials and spherical
Bessel functions of order � respectively, and also carry out a multipole
expansion of the anisotropic modulation, F(k, ν). A general multipole
expansion decomposes an angular function into radially dependent
coefficients of the Legendre polynomials,

F (k, ν) =
∞∑

�=0

c
(1)
� (k)P�(ν). (4)
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The expansion coefficients c
(n)
� (k) are determined using the orthogo-

nality of the Legendre polynomials, where we introduce the notation

c
(n)
� (k) = 2� + 1

2

∫ 1

−1
dν P�(ν)[F (k, ν)]n, (5)

which will become useful when we consider the covariance calcula-
tion. The complete form of F(k, ν) is given in equation (24). With
these expansions in hand, the Fourier transform in equation (2) can
now be expressed as

ξ (r, μ) = 1

(2π )3

∫
d3k P (k)

[ ∞∑
�=0

i�(2� + 1)P�(k̂ · r̂)j�(kr)

×
∞∑

�′=0

c
(1)
�′ (k)P�′ (ν)

]
. (6)

The angular integral is over a product of Legendre polynomials as a
function of angles with respect to k̂. This can be expanded using the
addition theorem of spherical harmonics,∫

d2	kP�(k̂ · r̂)P�′ (k̂ · n̂)

=
(

4π

2� + 1

)2 ∫
d2	k

�∑
m=−�

Y�m(k̂)Y ∗
�m(r̂)

×
�′∑

n=−�′
Y ∗

�′n(k̂)Y�′n(n̂), (7)

where Y�m(x) the spherical harmonic of order (�, m). As a con-
sequence of the orthogonality of the spherical harmonics under
integration, only terms satisfying m = n are non-zero. Evaluating
this integral and re-applying the addition theorem, we obtain∫

d2	kP�(k̂ · r̂)P�(k̂ · n̂) = δ��′
4π

2� + 1
P�(n̂ · r̂). (8)

The action of δ��′ allows terms from each multipole expansion to be
collected under a single summation. For brevity, we next combine
the radial part of the integral for Legendre mode � into the quantity

I�(r) =
∫ ∞

0
dkk2c

(1)
� (k)P (k)j�(kr). (9)

The resulting final expression for the 2D correlation function reads
as its own multipole expansion,

ξ (r, μ) =
∞∑

�=0

P�(μ)
i�

2π2
I�(r). (10)

We can immediately see the useful result that the multipole coeffi-
cients of this expression have a straightforward form,

ξ�(r) = i�

2π2
I�(r). (11)

In other words, to calculate a given multipole � of the correlation
function, only the Legendre coefficient of the power spectrum
modulation c

(1)
� (k) of the same order is required. In what follows,

we use the expression above as a model for the monopole (� = 0)
and quadrupole (� = 2) of the correlation function.

2.2 The covariance of ξ�(r)

We additionally construct an analytic model of the covariance of the
multipoles of the 21 cm correlation function, under the assumption
that the bins of the correlation function can be approximated as
being Gaussian distributed. The advantage of an analytic model is

that the covariance can readily be calculated for a range of different
instrumental configurations, cosmologies etc. without recourse to
suites of expensive large-scale structure simulations. The main
drawback is that nonlinear effects and non-Gaussianities are left
unmodelled. Since we are focusing on the BAO feature at large scales,
we expect an analytic covariance model to be sufficiently accurate
for our purposes here, although a more rigorous confirmation of this
expectation is left for future work.

We construct the covariance by considering moments of the binned
2D correlation function. We begin by considering the 3D correlation
function, which is the expectation value of the product of the matter
density contrast at two points with a comoving separation r,

ξ (r) = 〈δ(x)δ(x + r)〉. (12)

Under the assumption that the underlying density field is traced by a
discrete set of objects (e.g. galaxies), there is an additional Poisson
noise contribution to the observed correlation function, which we
model as an uncorrelated shot noise term,

ξobs(r) ≡
〈(

δ(x) + 1

n̄

) (
δ(x + r) + 1

n̄

)〉
, (13)

where n̄ is the spatial average of the number density of the tracer
objects. Since ξobs(r) does not have zero mean in general, its
covariance is

C(r, r′) = 〈ξobs(r)ξobs(r′)〉 − 〈ξobs(r)〉〈ξobs(r′)〉. (14)

In general, this expression can be decomposed into a series of
terms involving four-point and two-point correlators involving con-
volutions of ξobs(r) with itself (Tansella et al. 2018). Assuming
Gaussianity, we can apply a Wick rotation to simplify the four-point
terms, and then apply the convolution theorem to obtain

C(r, r′) = 1

V (2π3)

×
∫

V

d3k

[(
1

n̄2
+ 2

n̄
Pobs(k, ν) + P 2

obs(k, ν)

)

×
(

eik·(r−r′) + eik·(r+r′)
)]

, (15)

where V is the survey volume within which the correlation function
is evaluated. The three separate contributions to the covariance are
clear in the first set of square brackets in this expression: the first
term is a pure shot noise contribution, the second term is a noise-
clustering cross-term, and the last term constitutes the pure clustering
term. An identical expression can be found in the calculation used
by the COFFE code (Tansella et al. 2018), following earlier work
on cross-correlation covariances (Bonvin, Hui & Gaztanaga 2016;
Hall & Bonvin 2017); see also Smith (2009) and Grieb et al. (2016)
for another consideration of the binned covariance matrix. This
expression can be further extended to take into account the finite
size of survey redshift bins; evaluating the covariance at the central
redshift of the bin is sufficient for our purposes so we do not take
into account the redshift bin width except for in our specification of
the spatial volume.

To further simplify this expression and introduce the multipole
expansion of the correlation function, we once again substitute
the plane-wave expansion for the complex exponential terms. The
covariance of multipoles (�, �

′
) of ξ (r) can then be obtained by

evaluating the multipoles of the 3D covariance C(r, r′) for comoving
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separations (r, r
′
),

C��′ (r, r ′) = (2� + 1)(2�′ + 1)

4

×
∫ 1

−1
dμ

∫ 1

−1
dμ′P�(μ)P�′ (μ′)C(r, r′).

After further simplifications that make use of the properties of
Legendre polynomials and Bessel functions (see Appendix B for
a derivation), the resulting expression is

C��′ (ri , rj ) = i�−�′

V π2

×
(

(2� + 1)π

2n̄2Lpr2
δij δ��′ + 2

n̄
A��′ (ri , rj )

+ B��′ (ri , rj )

)
, (16)

where Lp is the size of each side of the 3D voxels used to calculate the
covariance (i.e. corresponding to the binning of the 3D correlation
function) and V is again the survey (redshift bin) volume. The
functions A and B are defined by making use of the Wigner 3-j
symbol W ,

A��′ (ri , rj ) = (2� + 1)(2�′ + 1)

×
∫ ∞

0
dkk2P (k)j�(kri)j�′ (rj )

×
∑

n

c(1)
n (k)

(
W��′n

000

)2

,

B��′ (ri , rj ) = (2� + 1)(2�′ + 1)

×
∫ ∞

0
dkk2P 2(k)j�(kri)j�′ (rj )

×
∑

n

c(2)
n (k)

(
W��′n

000

)2

.

In the aforementioned COFFE covariance calculation, the effects
of RSDs are handled analytically, leading to a similar non-trivial
multipole expansion of the covariance as shown above. Our im-
plementation extends this to include additional anisotropic effects
that are present in 21 cm data, including the instrumental beam
and a foreground cut. An important difference is that the multipole
coefficients of these effects are functions of k in general, rather than
being constant as is the case for the RSDs, and so A and B now
include the multipole coefficients c

(n)
� inside the integrals.

In Section 3, we will evaluate the multipole coefficients, and hence
the correlation function and its covariance, for particular choices of
instrumental beam model and foreground cut. Our computations use
a fast method for evaluating the integral I�(r) based on FFTLog,
which we outline in Appendix A.

2.3 Noise contribution

In the expressions above, we have included an uncorrelated shot
noise contribution to the observed correlation function, which is the
main source of noise in galaxy surveys. While a small shot noise
contribution is also expected to be present in the 21 cm signal, the
dominant source of noise is instead expected to be thermal noise due
to the overall temperature of the receiver system, modelled by the
system temperature, Tsys. Since this is also an uncorrelated random
component with mean zero, we can include it in our model without
any further changes to the expressions above, simply by writing its

contribution to the variance as an effective number density. For an
autocorrelation experiment, this can be derived from the radiometer
equation to obtain

1

nIM
= (�ν̃ Sarea)(r2rν)

I
�ν ttot

(
Tsys

Tb

)2

, (17)

where �ν is the frequency bin width; �ν̃ = �ν/ν21cm is the dimen-
sionless redshift bin width; I = N−1

dish is a dish multiplicity factor; r
is the comoving distance to the centre of the redshift bin; rν = c(1 +
z)2/H(z) is a redshift to distance conversion factor; Sarea is the area of
the sky covered by the survey; ttot is the total integration time; Tsys is
the system temperature; and Tb is the H I brightness temperature. The
leading factors in parentheses correspond to the redshift bin volume
in observed coordinates (first term) and the conversion to comoving
units (second term). A slightly different approach was taken in Bull
et al. (2015b), where an anisotropic effective number density was
constructed that also included the effect of the instrumental beam. It
is important to note that this choice was made for convenience; in the
Fisher matrix expressions used in Bull et al. (2015b), the beam effect
could be attached to either the signal or noise power spectrum terms
without any loss of generality. In this paper, we have consistently
included the beam effect as part of the signal power spectrum model,
and so the noise term is isotropic and scale-independent.

3 R E C OV E RY O F TH E BAO SC A L E

In this section we describe our methods for recovering the radial
and transverse BAO scale from simulated (mock) measurements of
the multipoles of the 21 cm correlation function from a MeerKAT
IM survey. We begin by defining a model of the 21 cm power
spectrum that includes an anisotropic ‘shift’ parametrization of the
BAO feature, a realistic instrumental beam smoothing effect, RSDs,
and the effects of a foreground cut. We describe the specific models
we use for each of these anisotropic effects, followed by a set of
phenomenological fitting models for de-trending the continuum of
the correlation function and recovering the BAO feature using a
simple model fitting procedure. Finally, we outline the parameters of
a fiducial 21 cm IM survey with MeerKAT, based on the proposed
MeerKLASS survey specification (Santos et al. 2017).

In what follows, we use the CCL cosmology library (Chisari
et al. 2019) to calculate background quantities and the linear matter
power spectrum in our fiducial cosmology, defined by 	m, 	b, h,
ns, σ 8 = {0.315, 0.049, 0.67, 0.96, 0.83} obtained from Planck
Collaboration (2014).

3.1 Shift parametrization of the power spectrum

We wish to construct a simple phenomenological model for the
observed monopole and quadrupole of the 21 cm correlation function
that can be used to extract the radial and transverse BAO scales in
an unbiased way. While in principle we could construct a detailed
forward model of the data based on the analytic models from the
previous section, this would be computationally intensive if used
in a model-fitting procedure. By using a simpler phenomenological
fitting model instead, where features such as the smooth continuum
of the correlation function are fitted out using (e.g.) polynomials, we
are able to obtain results much faster. This procedure is also closer
to what is typically used to extract the BAO feature from galaxy
surveys.

Our phenomenological model is based on the common strategy of
parametrizing deviations from a fiducial cosmological model. The
BAO feature, or specifically the departure of the BAO scale from
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that found within the fiducial cosmology, may be parameterized by
introducing a pair of ‘shift’ parameters, α⊥, α�. These parameters
represent the departure from the fiducial values of the angular
diameter distance DA(z) and expansion rate H(z),

α⊥ = DA(z)

Dfiducial
A (z)

; α‖ = H (z)fiducial

H (z)
. (18)

Following (e.g.) Blake & Glazebrook (2003) and Bull et al. (2015b),
we first decompose the isotropic linear matter power spectrum P(k)
into smooth and oscillatory parts, Psmooth and fBAO, respectively,

P (k, k′, z) =
(

1 + AfBAO(k′, z)

)
Psmooth(k, z), (19)

where A = 1 is the amplitude of the BAO feature and k
′
denotes the

wavenumber after an anisotropic shift has been applied,

k′ =
√

(α⊥k⊥)2 + (α‖k‖)2 =
√(

α⊥k
)2

(1 − μ2) + (
α‖kμ

)2
. (20)

Note that we only allow the anisotropic shift to affect the BAO
feature. This choice ensures that only the recovered BAO feature
imparts information about the shift parameters when we perform
the model fits; the smooth power spectrum is assumed constant.
In reality, deviations from the fiducial cosmology also result in an
anisotropic shift in the broad-band shape of the power spectrum,
but extracting this information requires substantially more careful
modelling however, which we forego here.

To split the power spectrum into smooth and oscillatory parts,
we take a cubic spline over the linear power spectrum in log–log
space, using only the points outside of the BAO region that we define
as 0.017 Mpc−1 < k < 0.45 Mpc−1. In non-logarithmic space, this
spline represents the smooth part of the power spectrum, Psmooth(k,
z). The oscillatory part, fBAO(k

′
, z), is then found by dividing the total

power spectrum by the smooth part.
The frequency of the oscillations in the harmonic space fBAO

function effectively determines the separation at which the BAO
feature will appear in the correlation function multipoles (Eisenstein
et al. 2006). An increase in either α⊥ or α� equates to the acoustic
peak appearing at a greater separation in the correlation function,
while any shift α� �= α⊥ introduces anisotropy into the correlation
function.

3.2 Anisotropic model of the observed power spectrum

In the previous section, we constructed a model of the linear
matter power spectrum with a BAO feature that shifts/stretches
anisotropically depending on deviations from the fiducial back-
ground cosmology, according to equation (18). For the purposes of
this paper, this represents the full cosmological information content
that we hope to be able to extract from the 21 cm correlation function.
In this section, we will incorporate a further set of observational
effects that also contribute to the anisotropy of the observed power
spectrum, and therefore of the 21 cm correlation function, but which
are in some sense ‘nuisance’ effects that degrade our ability to recover
the BAO scale.

Autocorrelation experiments observe the brightness temperature
fluctuations of the redshifted 21 cm line as a function of frequency
and angle on the sky. By treating the neutral hydrogen as a linearly
biased tracer and converting H I mass density to brightness temper-
ature, we can link the brightness temperature fluctuations to matter
density fluctuations δM,

δTb(k⊥, k‖, z) = T̄H I(z) bH I(z) δM (k⊥, k‖, z) (21)

with the mean brightness temperature given by

T̄H I(z) ≈ 180h 	H I(z)
(1 + z)2

H (z)/H0
mK, (22)

where z refers to the mean redshift of the band under consideration
and 	H I(z) is the H I fractional density at redshift z (Battye et al.
2012a; Hall, Bonvin & Challinor 2013; Bull et al. 2015b). Wave-
length maps to observed redshift according to λ = λ21cm (1 + z),
where λ21 cm = 0.211 m. To convert observed redshift and angular
position into comoving coordinates, we must also account for
peculiar velocities, which distort the mapping between ‘real space’
and ‘redshift space’. See Hall et al. (2013) for a careful treatment
of this mapping that includes all relevant effects to linear order. In
this paper, we will include only the effects of peculiar velocities, via
an RSD term PRSD that multiplies the power spectrum, and neglect
relativistic and wide-angle corrections.

The process of observing the redshift-space 21 cm brightness
temperature fluctuation field with an autocorrelation experiment
imposes additional anisotropic effects on the signal. First, what is
observed is a convolution of the true sky brightness temperature
distribution with an instrumental beam function. In harmonic space,
this can be represented as the product of the Fourier-transformed,
wavelength-dependent beam power pattern, B(k⊥, λ), with the
brightness temperature fluctuations,

δT obs
b (k⊥, k‖, z) = B(k⊥, z) δTb(k⊥, k‖, z). (23)

Note that k⊥ denotes a 2D vector in the plane of the sky; in what
follows we will assume axisymmetry, in which case B(k⊥, λ) →
B(k⊥, λ), where k⊥ = |k⊥|.

Instrumental noise is also introduced into the observed signal,
which we discussed in Section 2.3. We assume this to be ho-
mogeneous, uncorrelated white noise, which does not impart any
additional anisotropy into the measured correlation function. Finally,
foreground contamination imparts a strongly anisotropic signal in
Fourier space that is several orders of magnitude brighter than the
target cosmological signal. This must be filtered or subtracted out in
order to recover the cosmological signal, but all current foreground
removal methods do this at the expense of losing cosmological
signal in the overlapping region of Fourier space. The filtered
data are therefore modulated by an anisotropic effective Fourier-
space window function Wfg that accounts for the signal lost by
the foreground removal process. The foreground removal process
will leave residual unfiltered foregrounds in the data. We make the
simplifying assumption that these residuals are uncorrelated and
noise-like, and so would expect them to average down. We do not
include an additional residual noise term in our analysis however.

Putting all of these effects together, we arrive at the following
explicit form for the anisotropic modulation of the isotropic cosmo-
logical power spectrum:

F (k, μ, z; α⊥, α‖) =
[

1 + AfBAO(k, μ; α⊥, α‖)

]
× PRSD(μ, z) B2(k⊥, z) Wfg(k, μ, z), (24)

where the observed power spectrum is

Pobs(k, μ, z; α⊥, α‖) = F (k, μ, z; α⊥, α‖)Psmooth(k, z). (25)

In the following sections, we construct explicit models for each of
the anisotropic factors.

Note that there are other observational and instrumental effects
that may cause anisotropies in the power spectrum that we have
not modelled here. The excision of RFI and the shape of the
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survey region introduce a complex window function that can induce
additional anisotropic structure into the analysis, particularly by
coupling Fourier modes together (Offringa, Mertens & Koopmans
2019). Correlated (1/f) noise, its coupling to the scan pattern of the
instrument, and the filtering schemes used to mitigate it could also
potentially introduce power anisotropies (Bigot-Sazy et al. 2015;
Harper et al. 2018; Li et al. 2021), as could polarization leakage
(Alonso, Ferreira & Santos 2014a; Liao et al. 2016; Cunnington
et al. 2020). It is also possible for calibration errors, for example
due to beam or calibration source model errors, to also introduce
additional anisotropic structure (Matshawule et al. 2020). We defer
an examination of the impact of these effects on the correlation
function to later work.

3.3 Instrumental beam models

The angular size of the MeerKAT instrumental beam ranges from
around 0.9–1.4 deg in the redshift range covered by the L-band,
which translates to only a factor of a few smaller than the an-
gular scale of the BAO feature at the corresponding redshifts.
The beamwidth grows with wavelength approximately according
to θbeam ∼ λ/Ddish ≈ 0.9(1 + z) deg, while at low redshift the an-
gular size of the BAO feature scales approximately as θBAO ∼
150 Mpc/(cz/H0) ≈ (2.0/z) deg. As such, we expect beam smooth-
ing to have an important effect on the observed 21 cm correlation
function that worsens with increasing redshift. Previous works have
mostly studied this effect in Fourier space, where it is clear that BAO
wiggles at higher k are lost/down-weighted due to beam attenuation,
but lower-k wiggles remain intact even at relatively high redshifts,
allowing some cosmological distance information to be recovered
despite the poor angular resolution.

The picture is more complicated for the correlation function, which
is related to the power spectrum by a Fourier transform. The BAO
wiggles, encoded by the function fBAO(k), resemble a wave packet.
The frequency of the wiggles within the wave packet sets the scale
at which the BAO feature appears in the correlation function, while
the width of the packet sets the effective width of the feature. Beam
attenuation effectively shrinks the wave packet in Fourier space,
which corresponds to a broadening or smoothing of the feature in
the correlation function. Even if one or two wiggles remain in the
attenuated power spectrum, the reduction in packet width can cause
such a strong degree of smoothing that a BAO bump feature is no
longer discernible from the continuum of the correlation function.
This effectively ‘hides’ any remaining distance information from the
BAO feature from detection in the correlation function, even though
it is technically still there.

Since it is clear from this discussion that the recovery of the BAO
scale will depend sensitively on the degree of beam smoothing, we
attempt to work with as realistic a beam model as possible. We
use the katbeam package (Matshawule et al. 2020) to model the
MeerKAT beam response as a function of frequency. This makes use
of electromagnetic simulations and field observations to construct
detail beam models for both the L and UHF band receivers in both
polarizations. We use katbeam to generate the electric field beam,
Ei(θ ), at the centre frequency of each redshift bin, for angles in the
range [0◦, 5◦] from beam centre for the HH polarization. The beam
is close to being cylindrically symmetric, and we use a single beam
model to represent both polarizations. The electric field values are
related to the beam power pattern by

B(θ ) = |Ei(θ )|2. (26)

We convert B(θ ) to a function of transverse separation B(r⊥) at the
target redshift by stretching the θ axis by a factor of π

180 r(z) where
r(z) is the comoving (transverse) distance to redshift z evaluated by
CCL.

Since we have assumed that the beam has cylindrical symmetry,
we can generate the harmonic-space beam function via a Hankel
transform,

B(k⊥) =
∫ ∞

0
dr⊥r⊥J0(k⊥r⊥)B(r⊥). (27)

The resulting function is normalized to 1 at its maximum, and we
then calculate its Legendre multipole coefficients. Note that the
fundamental width of the MeerKAT beam has additional complicated
behaviour in the frequency direction (Asad et al. 2019; Matshawule
et al. 2020); for example, the beamwidth has a rapid low-level
oscillation with frequency (which may introduce extra spectral
structure through interactions with the foregrounds for example).
We take the katbeam outputs to have satisfactorily accounted for
such effects, and do not attempt to refine the model any further.

Since the beam smoothing effect enters the observed power spec-
trum expression as the square of the beam power pattern, we expect
sidelobes to be greatly suppressed compared with the mainlobe. We
therefore examine whether a much simpler beam model can be used
that approximates only the mainlobe by a Gaussian with an FWHM
matched to that of the true beam function. This approximation is
advantageous since under a Hankel transform, a Gaussian transforms
into another Gaussian, making this beam pattern particularly simple
to work with. The analytic Hankel transform of a Gaussian real-space
beam with standard deviation Rbeam is

B(k⊥) = e− 1
2 k2

⊥R2
beam , (28)

and the multipole coefficients of its square, which we use in our
correlation function analysis, are

B2
� (k) =

∫ 1

−1
P�(ν) e−k2R2

beam(1−ν2) dν, (29)

where P� is the Legendre polynomial of degree � and in this expres-
sion ν is the direction cosine between the line-of-sight direction and
the Fourier wavevector.

We follow Villaescusa-Navarro et al. (2017) in defining the width
of the effective Gaussian beam via

Rbeam = θFWHM√
8 ln 2

r(z). (30)

In order to determine the Rbeam values that match the width of the
true MeerKAT beam, we construct a spline of the function y = B(r⊥)
− 0.5, find its root, and then multiply by 2 to determine θFWHM.
Fig. 2 shows the katbeam model at z = 0.3915 as compared with
the Gaussian beam model that is matched to its FWHM, while Fig. 3
shows how the resulting beamwidth varies with redshift.

Since the use of Gaussian beam models is relatively common
in the literature, both the katbeam-derived model and a Gaussian
FWHM-matched model will be considered in the fitting analysis as
an opportunity to better understand any interactions that the Rbeam

may have with other fitting parameters.

3.4 Redshift-space distortions and bias model

RSDs arise from the fact that we measure the position of sources
in redshift rather than comoving distance. When observing a dense
region along the line-of-sight, structures on the far side and near side
will be subject to additional blue/redshifts respectively due to their
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Figure 2. Comparison between the cylindrically symmetrized katbeam
output (squared, see equation 26) for the MeerKAT beam model at z =
0.3915, and a Gaussian beam model matched to its FWHM. The Gaussian
beam model is a good approximation to the main lobe within 1 deg at this
redshift, but does not capture the beam’s side-lobes.

Figure 3. Rbeam values in the case of MeerKAT and the SKAO using θFWHM

≈ 1.2λ/Ddish, and calculated from the outputs of the katbeam package.
Comoving distances from CCL. White bands show redshift regions considered
in this analysis. The region at lower redshift has not been studied further in
this paper due to its small volume.

infall velocity towards the overdensity. We use the linear RSD model
according to Kaiser (1987),

PRSD(μ, z) =
(

b2
H I(z) + f (z)μ2

)2

, (31)

where f(z) is the linear growth rate and bH I is the linear bias factor
that relates fluctuations in the H I density distribution to matter
fluctuations. We have neglected the effects of nonlinear velocities,
e.g. the ‘Fingers of God’ effect, which would contribute an additional
suppression of power on small radial scales. For the H I bias, we use
a simple fitting function derived from the bias model in Bull et al.
(2015b),

bH I(z) ≈ bH I,0

0.677

(
0.667 + 0.178 z + 0.0502 z2

)
, (32)

where bH I, 0 is the amplitude of the H I bias function. We fix this
factor to be equal to the denominator, i.e. bH I, 0 = 0.677. Note that
the leading numerical factors do differ by a single digit.

3.5 Foreground removal

The impact of foreground cleaning methods on the recovery of the
21 cm power spectrum is relatively well studied for simulated data
(e.g. Wolz et al. 2013; Alonso et al. 2014b; Olivari, Remazeilles &
Dickinson 2015; Cunnington et al. 2019; Carucci, Irfan & Bobin
2020; Cunnington et al. 2020; Makinen et al. 2020). Since in this
paper we do not construct full-sky simulations, it is not possible
to replicate the full effects of foreground cleaning algorithms on
the recovered signal in detail. Within the scope of our analysis, we
instead seek to model the basic effect of foreground removal, which
is to effectively introduce a cut that removes the most foreground-
contaminated Fourier modes.

For autocorrelation experiments, we do not expect to observe
a ‘wedge’ feature in Fourier space that affects interferometric
observations (Thyagarajan et al. 2013; Thyagarajan et al. 2015; Seo &
Hirata 2016); instead, the foregrounds should remain confined to a
region at low k� with a width defined by chromatic effects due to gain
errors and the instrumental beam (e.g. Masui et al. 2013; Alonso et al.
2014b; Cunnington et al. 2019). We model this region as a Gaussian
in k� that suppresses modes below a cut-off kfg,

Wfg(k, μ) = 1 − exp

[
− 1

2

(
k‖
kfg

)2
]

, (33)

where k� = kμ (Bull et al. 2015b; Soares et al. 2021). This is broadly
consistent with the signal suppression that would be expected from
blind foreground removal methods that fit out smooth functions in
the frequency direction. The smooth edges of the cut region have
the advantage of reducing ringing in the Fourier transform when
calculating the correlation function. This is equivalent to applying an
apodization to a Fourier-space foreground filter. We do not consider
any dependence of the width of the region on k⊥.

3.6 Fitting the model to mock data

Using a joint monopole and quadrupole model vector along with its
covariance, we generate sets of Gaussian realizations that match the
noise properties of the covariance. We then fit our model to these
realizations and consider the fit distributions of α⊥, α� that arise.
The full fitting model for the multipoles of the correlation function
is as follows:

ξ�,fit(r) = D�(r) + i�

2π2

∫ ∞

0
dkk2c

(1)
� (k)j�(kr). (34)

With the introduction of the α-parameters, the power spectrum
becomes a function of line-of-sight angle μ and hence must be
included in the c�(k) calculation. The multipoles of the total power
spectrum c� are as defined in Section 2. The function D�(r) contains
continuum fitting parameters. The monopole and quadrupole fitting
parameters we use are comparable to Padmanabhan et al. (2012) for
the monopole, and have inverted powers for the quadrupole:

D0(r) = a0r + a1 + a2

r
+ a3

r2
; D2(r) = a4 + a5r + a6r2. (35)

The fitting model then has 11 total parameters, which are

� = {α⊥, α‖, A, Rbeam, a0, a1, a2, a3, a4, a5, a6}. (36)

Through testing we have found that using a range of separations
40–190 Mpc for the monopole and 80–190 Mpc for the quadrupole
enables fitting to be carried out effectively, and that priors on each
parameter determined through testing are also appropriate. We use
prior ranges on both α⊥, α� of {0.7, 1.3}, and consider fits at the
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Table 1. Survey and instrumental specifications for a single-dish MeerKAT
survey, similar to MeerKLASS.

Tinst ∼16K
Antennas 64
Survey time 4000 h
Survey area 4000 deg2

Redshift bins [0.005, 0.088]
[0.321, 0.462]

Central redshifts 0.0415, 0.3915

edge of this region to be catastrophic failures, in the sense that they
would be rejected if found in a real survey. Furthermore, we fix the
BAO amplitude parameter A to its fiducial value of 1 and adopt a
5 per cent prior on the value of Rbeam in cases where its value is not
fixed.

We use the SciPy routine curve fit over sets of noisy
realizations to test the recovery of α⊥, α� under different obser-
vational effects and beam assumptions. We test the inclusion of each
systematic in turn as well as their full combination. We also test how
the total integration time should affect the noise in the fits, the effect
of making use of the Gaussian approximation for the beam function
when the data is convolved with the actual MeerKAT beam, and the
impact of fitting with a suboptimal covariance. We also make use
of a likelihood method. Assuming a Gaussian distribution for each
point in the joint-correlation function vector, the log-likelihood for a
vector of measurements ξ we take to be

P = − 1

2
(ξ − ξmdl)

T C−1(ξ − ξmdl) + 1

4
Tr

(
log C

) + const., (37)

where C is the covariance matrix.

3.7 Fiducial MeerKAT survey specification

We adopt a similar survey specification to the MeerKLASS survey
(Santos et al. 2017), assuming a 4000 deg2 sky area using MeerKAT
64 dual-polarization receivers in the L-band operating in autocorre-
lation mode (Table 1). The instrumental temperature in this band is
Tinst ≈ 16 K. To calculate the system temperature, we include a mean
sky temperature contribution of the form

Tsky = 60 (300MHz/ν)2.55 K. (38)

We assume an integration time per pointing of approximately 1.85 h,
which corresponds to nIM = 3.74 × 10−3 Mpc−3 (see equation 17).
Note that this is the effective integration time following duty cycle
losses, including data lost to RFI flagging and noise diode fires that
are used for calibration, which means that the actual observing time
required to achieve this noise level is likely to be a factor of ∼2 times
longer.

Recent observations have also shown substantial segments of the
MeerKAT L-band to be heavily polluted by RFI. We adopt the
same frequency ranges as the analysis in Wang et al. (2020), which
conservatively avoids these regions of the band, resulting in two
subbands, 971–1075 and 1305–1504 MHz, where RFI is minimal.
These are shown as white regions in Fig. 3. For our analysis in the
rest of the paper, we consider only the lower-frequency band, centred
on z = 0.3915; the higher-frequency band covers a comoving volume
of only ∼ (300 Mpc)3 for a MeerKLASS-like survey area, making it
highly sample variance-limited.

4 R ESULTS

In this section we describe the effects of instrumental beams and a
foreground cut on the correlation function, and present an analytic
calculation of the covariance of the multipoles of the correlation
function in the presence of these effects. We then demonstrate
how they affect our ability to recover the radial and transverse
BAO scales by performing model fits to large numbers of Gaussian
random realizations of the binned correlation function multipoles
with MeerKAT-like noise and beam specifications.

4.1 The 2D correlation function

In this section, we analyse how various anisotropic effects affect
the 2D (redshift-space) 21 cm correlation function. In Fig. 4, we
plot the 2D correlation function calculated using equation (10) after
including each anisotropic effect in turn, beginning with the isotropic
cosmology-only case, and then adding RSDs, beam smoothing, and a
foreground cut respectively. To plot the correlation function, we sum
multipoles up to � = 25, which is enough to suppress most artefacts
that would arise if a smaller number of terms was used. For our
calculation, we assume a MeerKAT-like configuration for a redshift
bin centred at z = 0.3915, and do not include a noise contribution.
Note that Fig. 4 shows a smooth representation of ξ (r⊥, r�), and has
not yet been binned in separation.

For clarity, Fig. 4 shows the correlation function multiplied by the
separation r2 in order to enhance the visibility of the various features.
The BAO feature is visible as an isotropic ring in the base cosmology
case (first panel), and there is also an increase in correlation towards
smaller separations, as expected. Once RSDs are added (second
panel), the correlation function becomes strongly anisotropic; the
BAO feature remains clearly visible for all angles with respect to the
line of sight, but is most clearly defined in the purely radial direction
(r⊥ ≈ 0), where the underlying continuum has been suppressed.

When the beam response is added (third panel), the BAO feature
is very clearly smoothed out in the purely transverse direction (r� ≈
0), and for a spread of angles around it. It has comparable sharpness
to the no-beam case in the purely radial direction however. Note that
some ray-like artefacts are visible at small separations in this panel;
this is an artefact of the multipole expansion, and is increasingly
strongly suppressed as more multipoles are included in the sum.

In the last panel, the addition of a foreground cut at kfg = 0.01
Mpc−1 pulls the correlation function down to strongly negative values
in the radial direction, erasing the BAO feature and much of the
continuum in a band of width �r⊥ ≈ 50 Mpc around r⊥ = 0. The
BAO feature therefore only remains clearly visible at intermediate
angles from the line of sight.

4.2 Multipole covariance matrix

Next, we study the effect of introducing the same anisotropic effects
as in Fig. 4 on the covariance matrix of the monopole and quadrupole
moments of the 2D correlation function. We show the covariance
matrices in Fig. 5 for the same sequence of models at redshift
z = 0.3915, but now additionally include the noise variance in our
calculation, corresponding to an approximate total integration time
of 2150 h (n̄ ≈ 10−3 Mpc−3). We use a range of separations from
40–190 Mpc for the monopole and 80–190 Mpc for the quadrupole,
with separation bins of �r = 2 Mpc.

In the case of the base cosmology (first panel), only covariance
blocks � = �

′
are non-zero in accordance with there being no

anisotropic effects present. The covariance is larger at smaller
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Figure 4. Redshift-space correlation function models, ξ2D, plotted as
r2ξ2D(r⊥, r�) (in units of Mpc2), as a series of anisotropic effects are
cumulatively added. From top to bottom: isotropic cosmology-only case;
Kaiser RSD term added (no Fingers of God); MeerKAT-like Gaussian beam
added with Rbeam = 16.9 Mpc; foreground cut at k�, fg = 0.01 Mpc−1 added.
Substantial anisotropic smoothing of the BAO feature is visible on addition
of the beam response.

Figure 5. Block covariance plots at separations 40–190 Mpc for the
monopole and 80–190 Mpc for the quadrupole as a series of anisotropic
effects are cumulatively added to the model. The covariance shown here is
dimensionless. From top to bottom: base cosmology only; with RSD added;
with MeerKAT-like Gaussian beam added; with a foreground cut at k = 0.01
Mpc−1 added.
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