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ABSTRACT

If X, which follows a power-law distribution, is observed subject to Gaussian measurement
error e, then X + e is distributed as the convolution of the power-law and Gaussian distributions.
Maximum-likelihood estimation of the parameters of the two distributions is considered.
Large-sample formulae are given for the covariance matrix of the estimated parameters, and
implementation of a small-sample method (the jackknife) is also described. Other topics dealt
with are tests for goodness of fit of the posited distribution, and tests whether special cases (no
measurement errors or an infinite upper limit to the power-law distribution) may be preferred.
The application of the methodology is illustrated by fitting convolved distributions to masses
of giant molecular clouds in M33 and the Large Magellanic Cloud (LMC), and to Hr cloud
masses in the LMC.
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1 INTRODUCTION

The assumption of power-law probability distributions is ubiqui-
tous in astronomy. Examples include stellar initial mass functions
(e.g. Kroupa 2001); masses of molecular clouds (e.g. Rosolowsky
2005); luminosity functions for various classes of objects, such as
galaxies (Misgeld, Hilker & Mieske 2009), star clusters (Gieles
et al. 2006; van den Bergh 2006) and Kuiper-belt objects (Fraser &
Kavelaars 2008); sizes of a variety of astronomical objects, as di-
verse as bolides (Brown et al. 2002) and circumstellar discs (Vicente
& Alves 2005); the column densities implied by C 1v systems in Ly«
forests (Ellison et al. 2000); the intensities of giant radio pulses from
pulsars (Kinkhabwala & Thorsett 2000); numerous properties of the
sun, such as the burst energies, durations and interburst intervals in
the solar wind (Freeman, Watkins & Riley 2000); etc. Often power-
law indices, and other distributional parameters, are estimated by
fitting the power-law form to a set of observations {y;, y2, ..., yv }-
This is not entirely appropriate if the measurements are contami-
nated by substantial measurement errors. Denote by x; the true (i.e.
error-free) values of the quantity of interest and by e; the errors,
so that the measured values y; = x; + ¢;. If the errors have the
probability density function (PDF) f,, and the power-law PDF is
denoted by f;, then

f\'(y):/ Je@) fe(y — x)dx, ey

i.e. the measurements y; have a convolved PDF (e.g. Mood, Graybill
& Boes 1974). For the truncated power law

yx— o+

fx(X)=L L=x=<U @

-y _ -7
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and zero mean Gaussian errors,

— l 4 . —(y+1) L(y—x ’
(y) = -
5 e L7 U /L x exp | —5 - dx

follows. This PDF could differ substantially from (2).

One simple way of seeing the difference between the distribu-
tions (2) and (3) is to compare probability—probability (PP) plots
based on the two forms. The calculations required for the PP plots
are based on cumulative distribution functions (CDFs). The CDFs
corresponding to (1)—(3) are

Fy(y) =/ Fe(x) fe(y — x) dx,

L~ —x~V
R = 5—5 L=x 4)

Ry =o(2=Y) 2 1
= o Vomo L7 — U7
U
(L

2
></L T —Xx77)exp |:—; (y;x) :| dx, 5)

where

d(v) = ~1*12 4

1 /“
— e
V27 J -0
is the standard normal CDF. The PP plots are graphs of the empirical
CDFs
0 <y

N +1
against the theoretical counterparts (4) or (5). The empirical CDF is
a step function, with a step of size 1/(N + 1) at each measurement

F(y) =
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Figure 1. PP plots for a simulated data set, consisting of 300 values dis-
tributed according to equation (3). The plot in the top panel is based on the
(incorrect) assumption that there is no measurement error; the plot in the
bottom panel incorporates Gaussian measurement errors.

value. The theoretical, or predicted, distribution values are obtained
by first estimating the parameters occurring in the theoretical CDFs
(ie. L, U, y and o); F, can then be explicitly evaluated in each
observation value y;. If the data are indeed drawn from the proposed
distribution, then the plotted points should lie close to the straight
line 7 = F. The interested reader is referred to D’Agostino &
Stephens (1986) for a more extensive discussion.

A simulated example withy = 1.5, L =3,U = 6,0 = 0.4 canbe
seen in Fig. 1. For both plots, values of the parameters estimated by
maximum likelihood have been substituted in order to calculate the
CDF (4 or 5). The non-linear form in the top panel, corresponding to
the pure power law, convincingly demonstrates that the distribution
(4) does not describe the data. On the other hand, (5) (bottom panel)
is clearly a good model for the data, since observed and predicted
distributions are closely similar.

A more direct qualitative demonstration of some of the pitfalls
caused by the presence of measurement errors is given in Fig. 2,
based on the same data used to generate Fig. 1. The top panel shows
a histogram of a sample from an error-free power-law distribution. A
histogram of the same data, with added measurement errors, is given
in the bottom panel. Two effects are clearly visible: the contaminated
data extend beyond the interval [ L, U] over which the error-free data
occur, and the shape of the distribution is changed. The first effect
will clearly bias estimates of the lower and upper limits, while the
second will lead to biased estimates of the power-law exponent: in
particular, since the data are spread over a wider interval, the value
of y estimated from error contaminated will generally be too small.
Maximum-likelihood (see below) estimates of y, L and U for the
data with measurement errors are 1.19, 2.27 and 7.12, respectively,
if the model (2) is fitted to the data. On the other hand, fitting the
correct model (3) to the data gives estimates 1.46, 3.05, 6.03 — which
compare favourable with the true parameter values y = 1.5, L =3
and U = 6.

Power-law distributions without upper limits, i.e. U — o0, are
also commonly of interest. If there are no measurement errors,

fi(x) = ),Lyxf(yﬂ)
F.(x)=1—Lvx7. (6)

x>L,
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Figure 2. The top histogram is for 300 simulated data elements from a
power-law distribution with L = 3, U = 6 and y = 1.5. Zero mean
Gaussian measurements errors with o = 0.4 were added to give the con-
volved distribution in the bottom panel. The error-contaminated data ‘spill’
out of the interval [L, U], most notably for data near the lower limit L.

If the observations are subject to measurement errors, then

£y = yLY oox‘(””exp _l y—x 2 @
! V2mo Ji 2\ o ’

. y—1L LY * 1/y—x\>
R R I ETC= i T
@)

2 STATISTICAL THEORY

2.1 Maximume-likelihood estimation

Given that it is assumed that the data follow the statistical distribu-
tion (3), determination of the unknown parameters by maximum-
likelihood estimation (MLE) is indicated. Provided the observations
yi(j =1,2,..., N) are independent, the likelihood is simply the
product of the N PDFs of the form (3), with y = y; in the jth term.
The log likelihood (which is easier to work with) is then

N
L= —ElogZﬂ—Nloga + Nlogy — Nlog(L™" —U™)

N U 1 yi—x 2
+Zlog/L x~ "D exp —§< ’U ) ] dx. 8)
Jj=1

If the error variance o is specified, o is treated as a constant;
otherwise, it is a fourth parameter to be estimated along with y, L
and U. MLE entails maximization of (8) with respect to the unknown
parameters, which can be done numerically. Alternatively, the first
partial derivatives of £ with respect to the unknown parameters
could be set equal to zero, giving four simultaneous non-linear
algebraic equations which could be solved for the unknowns. The
former procedure is simpler, and therefore the one adopted in this
paper. The partial derivatives are nonetheless given in Appendix A,
as these are required in what follows.
The notation

¢=[y LU ol Q)
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for the vector of parameters, and
¢=[7 L U &Y (10)
for the vector of estimates, is a useful shorthand.

The analogous derivatives of £ for the untruncated distribution
(7) are in Appendix B. In this case,

¢=I[y L o]. 1)

2.2 The accuracy of the estimated parameters

For data sets which are not too large, non-parametric computer-
intensive methods such as bootstrapping or the jackknife can be
used to find, for example, standard errors of the estimated parame-
ters. Bootstrapping (e.g. Efron & Tibshirani 1993) entails repeating
the estimation for pseudo-samples of size N, drawn with replace-
ment from the original N data elements. The number of pseudo-
samples would typically be of the order of a thousand or more.
In the case of the jackknife, pseudo-samples of size N — 1 are
produced by excluding each of the N observations in turn. The es-
timation is repeated for each of the N pseudo-samples, giving the
set {@1), D2y, - - - » Py} Of N parameter vector values. The corre-
sponding covariance matrix is

N-1& .
Cr="3—2 @y —0) @ —90) b= D b
Jj=1 j=1
12)
Bissell & Ferguson (1975) is a readable introduction to the jack-
knife.
For large samples, the standard asymptotic theory of maximum-
likelihood estimates can be used: as N increases, the covariance

matrix of the parameter estimates approaches the inverse of the
Fisher information matrix
oL

0¢;09;
where E indicates the expected value (e.g. Rice 2007).
The required second derivatives of L are listed in Appen-
dix A (or in Appendix B for the untruncated distribution). Ob-
taining the expected values of these is daunting, hence the usual
alternative is followed of substituting data values for expectations
(giving the ‘empirical’ information matrix). The covariance matrix
is then

*L
C=- [a@adn]

Although calculation of C; requires a fair amount of careful
computer programming, the calculation time is trivial. Furthermore,
its approximation of the covariance matrix of ¢ improves with
increasing sample size. These facts make it an attractive alternative
to C; for large N.

F = [—E } i,j=1,2,3,4, (13)

-1
i,j=1,2,3,4. (14)

2.3 Goodness of fit of the model

Fig. 1 demonstrates the importance of verifying that the statistical
model fitted to the data is appropriate. PP (or quantile—quantile)
plots are useful informal goodness-of-fit tests. More formally, there
are a number of statistical tests which can be performed — the
Kolmogorov—Smirnov, Anderson-Darling and Cramér—von-Mises
are probably the best known. All three of these statistics measure
discrepancies between the theoretical and observed CDFs, and in
that sense are quantitative (rather than visual) methods to evaluate
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deviations from linearity in plots such as Fig. 1. Unfortunately,
none of these statistics is distribution free in the present context,
hence percentage points would need to be found by simulation or
bootstrapping. For large N (a few hundred or more), this is currently
still tedious due to the excessive amount of computer time needed
(primarily required for the maximization of £ in 8).

A very simple alternative is to use a x 2 statistic S which compares
the observed and predicted numbers of data elements in P selected
intervals:

,
(0; — E;)?
S:Z]TJ ~ Xb—k-1- (15)
Jj=1 ’

In (15), O; and E; are, respectively, the observed and expected
numbers of data elements in the jth of the P bins and K is
the number of estimated parameters (four for the full model,
if o is unspecified; three if o is given). Let the bins be

(uo, u1); (uy, uz); ... 5 (wp_y, up), with uy = —oo and up = oo.
Then,
Ej = N[Fy(u;)— Fy(u;-1)]. (16)

2.4 Testing for specific power-law distributional forms

Specific forms of (3) are often of interest. Two types of null hy-
potheses could be of interest. In the first, there may be theoretical
models, or other data sets, which suggest particular parameter val-
ues, and the researcher may want to test for conformity with these.
A common example is to test whether the exponent y = c, for spec-
ified c. The second type of null hypothesis involves testing whether
a simplified form, rather than the full form (3), provides an adequate
description of the data. Two examples are: U — oo, for which (3)
reduces to

1 R 1 /y—x\"
— (y+1 _ .
f_v(y)—mayLV/L xY eXp[ 2( . )}dx
(17

and ¢ — 0, for which (3) reduces to (2). A further special case
of both (17) and (2) is U — o0, o = 0, which gives the standard
power-law distributional form (6).

The first type of hypothesis can be tested by likelihood ratio test
statistics (e.g. Mood et al. 1974):

A = 2[max L(H1) — max L(HO)] ~ x2 . (18)

The null and alternative hypotheses are denoted by HO and H1,
respectively, and the maxima of the log likelihood are determined
under each of these. The statistics has an asymptotic x 2 distribution,
with degrees of freedom d equal to the number of constraints im-
posed by HO. (For example, if the null hypothesis specifies values
for y and either L or U, thend = 2.)

The same procedure cannot be used for the second type of hy-
pothesis, since required regularity conditions are not satisfied. An
extensive discussion of broad classes of such problems can be found
in Andrews (2001). The two examples above are of the type in which
there are parameters (U or o) which lie on the boundaries of their
parameter spaces under the null hypothesis. (This is easy to see in
the case HO: o = 0; in the case U — o0, it is more obvious if one
considers the equivalent hypothesis H0: U~ = 0.)

Fortunately, there is a simple alternative way of viewing the
problem, namely as one of model selection. In that case, information
criteria such as

2K(K +1) oo . .
AIC = 2L + 2K + N_K_1 (Akaike information criterion),

BIC = —2L£ + K log N (Bayes information criterion) (19)



498 C. Koen and L. Kondlo

(K being the number of model parameters) for the competing models
can be compared. The likelihood term in these criteria measures how
well the model fits the data; since it appears as the negative of the
likelihood, the term is small for a good fit. The remaining term(s)
are a measure of the model complexity — simple models (i.e. small
values of K) are preferred. It is therefore desirable to have both — L
and the model complexity terms as small as possible, i.e. the ‘best’
model is that which minimizes the information criterion.

Burnham & Anderson (2004) provide an excellent discussion of
the two information criteria in (19). The AIC is a bias-corrected es-
timator for the Kullback—Leibler information (the information lost
when a model is used to summarize the information in a set of obser-
vations). In the case of the BIC, it is implicitly assumed that one of
the candidate models fully describes the observations; as the number
N of observations increases, so the probability approaches unity that
the BIC selects this model. There is thus a philosophical difference
between the two criteria. Burnham & Anderson (2004) also point
out a Bayesian interpretation, in which the two information criteria
assign different sets of prior probabilities to the collection of can-
didate models. In practice, the AIC is usually best when increased
model complexity leads to incrementally better fits, while the BIC
performs best for data which can be modelled very well with simple
models (i.e. small K).

It is also possible to attach probabilities to each of the models
(Burnham & Anderson 2004): let

1
A; =exp _E(ICi — I Cuin) | ,

where i indexes the model and IC,;, is the minimum value of
the information criterion (either AIC or BIC). Then, the model
probabilities are

— Ai
=S
and obviously the model with the largest probability is selected.

The maximum-likelihood parameter estimates for the zero mea-
surement error models (6) and (2) are known:

(20)

L = min;(x,),
-1
y=N [Z(logx,- —log Z)] 2D

for U — o0, and
L = min;(x;),
i\/ = maxl-(x,-),

N
+ = Z(log x; — log Z) , r =min(x;)/ max(x;)

i

i=1 (22)

for finite U. The last of equations (22), for ¥, is implicit (Aban,
Meerschaert & Panorska 2006).

3 A COMPUTATIONAL DETAIL

Evaluation of the likelihood function is computationally expensive,
since N convolution integrals need to be calculated. It is therefore
important that the integration domain be restricted to a subinterval
of [L, U] over which the integrand is significantly non-zero. Set

1 /y; —x\?
o= [ (252)]
o2

3 /\
A s A
N e
49 50 51

X

Figure 3. Examples of three of the integrands in equation (A1), calculated
in the point x = 50. The power-law exponent is y = 0.82, and o = 0.16.
The triangles on the horizontal axes show the points where the functions are
equal to 107 (inner pairs) or 10~8 (outer pairs). See Section 3 for further
discussion.

then, since x > L,

1 N2
I(y;) < L™ exp [—2 (—y’ x) } :
’ o

It is then not difficult to show that /(y;) > € only over the interval
[y; — 8, y; + 8], where

5=0y/~2[loge +(y + DlogL]. 23)

More generally, the arguments of the integrals in (A1) are of the
form

2
Ii(j) = ﬁ(x’yj)x7(7+1) exp [_; (u) :| 7

o

where, for example, fs(x, y) = (y; — x)? log x for the integrals
I5(y;). The corresponding general form of (23) is

8:0\/—2 [loge + (v + Dlog L — logk;], 24)
where
kj=max f(x,y;) L=<x=U.

Specifically, letting d; = max (|y; — L, |y; — U|),

logU  [fi(x,y;) =logx]

log?U [ falx, y;) =log*x]

k=1 d; [fax, y)) = (3 — x)7] (25)
d} [fax,y)) = (y; = 2)*]

d_%]OgU [fs(x,y,-)=(yj —x)210gx] .

Fig. 3 is an illustration, based on the parameter values y = 0.82,
L =0.45,U =100.5 and o = 0.16 (see the example in Section 4.3).
The figure contains plots of the integrands of 1(y), I;(y) and /3(y)
as defined in (A1), calculated in the point y = 50. The inner pairs of
filled triangles on the horizontal axes indicate points corresponding
to € = 107, and the outer triangles denote points corresponding to
€ = 107%. Computation time is considerably reduced by evaluating
integrals only over the approximate range [49, 51], rather than
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[L, U] =10.45, 100.5]. Clearly, the smaller o /(U — L), the greater
the time saved by this device.
Limiting the integration domain is particularly pertinent in the

case of the non-truncated power law (7), for which the upper limit 2 06f /
U — oo. Equation (23) for the integral in the expression (8) for 5 0.4l ,a‘
the likelihood, i.e. Jo(i) in (B1), still applies. Approximations for 8 " Lid
the remainder of the integrals in (B1) are not as easy, as the func- g_ 0.2r
tions f(x, y;) are all monotonically increasing. Fortunately, the - wi :
numerical determination of the interval over which the integrand is °>3 / »*°
non-negligible is straightforward. o 08f /o
0
Q L oof
O 0.6 /
4 AN APPLICATION 0-4f ‘.....f“
In this section, the theory is applied to the estimation of the distribu- o-2r
tions of the masses of giant molecular clouds (GMCs) in M33 and o Le 2 2 2 2 22
0 0.2 0.4 0.6 0.8 1

the Large Magellanic Cloud (LMC), and to the mass distribution of
Hiclouds in the LMC. The intention is to demonstrate the applica-
tion of the theory, rather than to derive definitive results. Therefore,
for example, questions regarding the quality of published data are
not addressed (Rosolowsky & Leroy 2006).

The importance of the mass spectra of GMCs has been empha-
sized in recent reviews by Rosolowsky (2005) and Blitz et al. (2007)
to whom the interested reader is referred. A satisfactory power-law
fit to GMC masses in M33 is demonstrated in Section 4.1, while
problems with the fitting of similar observations in the LMC are
shown in Section 4.3. In Section 4.2, mass spectra fitted to H1 data
from the LMC are discussed.

4.1 GMCsin M33
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Figure 4. PP plots for the M33 data. The plot in the top panel is for the
CDF (5) (i.e. a finite upper limit U) while the plot in the bottom is for the
CDF (7) (infinite U).

Fig. 4 compares the fits of the two best distributional models.
Focussing on the bottom panel (U — ©0), it appears that there are
slight deficiencies at both the low-mass (corresponding to small Fy)
and large-mass (corresponding to large F,) ends. The deficiency at
the large-mass end implies that there are not enough large masses to
justify the assumption that U — oo. The lack of very small masses
— which is also visible in the top panel — is most easily explained as
being due to a small data incompleteness at the low-mass end.

The two estimated covariance matrices (14) and (12) are

The data analysed in the subsection were taken from Engargiola 0.069 0.13 0.26 0.081
et al. (2003). In particular, the ‘corrected’ masses, denoted M, are C — 0.13 042 047 0.23
analysed. There are N = 148 GMCs in the catalogue. = 1026 047 2469 038 |’
Results of the distribution fitting are summarized in Table 1. 0.081 023 038 032
The optimal model is the full. distribution in equat.lon (5), with the 0075 017 —0.033  0.10
untruncated power law (7) a distant second. The estimated exponent
y = 1.3 is in good agreement with the Engargiola et al. (2003) C, = 0.17 055 0042 032 (26)
estimate of 1.6 & 0.3, but their lower mass limit L = 4 is rather —0.033 0.063 6.49 0.062
different from the value 6.9 & 0.7 obtained here. 0.10 0.32  0.062 0.31

Table 1. The results of fitting power-law distributions to the masses of GMCs in M33.

Distribution model

Full 0=0,Ufinite o0#0,U—>00 o0=0U-—00
Equation number (@) 4) 7 (6)
Model probabilities
AIC 0.916 0 0.084 0
BIC 0.721 0 0.279 0
Number of bins Significance level of goodness-of-fit statistic S
P =10 0.50 p < 0.001 0.50 p < 0.001
P=15 0.66 p < 0.001 0.70 p < 0.001
P =20 0.28 p < 0.001 0.08 p < 0.001
Estimated parameters and standard errors for the full model
y L U G
Estimate 1.33 6.94 71.7 3.48
Asymptotic S.E. 0.26 0.65 4.97 0.57
Jackknife S.E. 0.27 0.73 2.55 0.55

Note. The first part of the table compares the fitting results for the four different power-
law forms discussed in Section 2, while the last few lines give the estimated parameters
with associated standard errors for the optimal model. The unit of mass is 10* Mp.
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The agreement is reasonable, except for covariances involving U.
We speculate that this is due to the structure of the power-law fitting
problem: many more data are required for the accurate estimation of
U, since only the largest (and therefore most scanty) data determine
the value of U. This means that large sample approximations (such
as C) of covariances of U will be poorer than covariances involving
other parameters. If this is correct, then the jackknife covariance
matrix is preferred for data sets of this order.

Comparison of the computation times of C; and C, is also of
interest: these were, respectively, 3 s and 1.4 h (Pentium 4 processor,
clock speed 3.2 GHz). Of course, the computation of C; could
be speeded up considerably by relaxing the convergence criteria
invoked when maximizing likelihoods, but it would still be orders
of magnitude larger than the time required to calculate C,. For larger
N, the computation time of C; rises slowly (most of it expended on
the calculation of the integrals in A1 or B1), while the computation
of C, becomes prohibitive for data set sizes of the order of a few
hundred.

The estimated measurement error ¢ = 0.56 is bound to be a
severe underestimate of the errors in the largest clouds. Since there
are many more small clouds than large, it seems safe to assume that
& will be determined primarily by masses close to L. The model for
the measurement errors is obviously very restrictive, a point which
is further discussed in Section 5.

4.2 H1 clouds in the LMC

Kim et al. (2007) presented a catalogue with three different sets of
H1 cloud masses, for three different brightness temperature thresh-
olds. Acceptable models could only be fitted to the 7, = 64 K
data, and those results are presented in Table 2. There are N = 195
masses.

The preferred model, according to both information criteria, is
again the form (5), with (7) the second choice. Interestingly, there
is a larger difference between the asymptotic and the jackknife
standard error estimates than in Table 1, despite the fact that the
data set is somewhat larger. A possible contributory factor is the
extent of the high-mass tail of the LMC H1 cloud distribution:
the 190 lowest masses are in the interval 2.2-550.4 x 103 Mg,

1 T T T T T
W
0.8} / J
06 3 £
>
E 04} ;
o) P -
D 0.2} 27 ]
So.
o g0 [ o
o + + + ¥
8 o/ﬁ
S o8t / 4
$ 0.6} / ]
S
0.4} :
- o
0.2} r"', |
0 Le® . \ \ \ )
0 0.2 0.4 0.6 0.8 1

Predicted probability

Figure 5. PP plots for the LMC H1 data. The plot in the top panel is for the
CDF (5) (i.e. a finite upper limit U) while the plot in the bottom is for the
CDF (7) (infinite U).

while the remaining five masses range from 867 x 10* to 2913 x
10° Mg.

The isolation of the largest mass value (the second largest mass
is 1496 x 10° M) accounts for the very large standard errors on U
in Table 2. Removing the largest mass does not affect the estimates
of y and L by much (¥ = 0.60, L = 3.66), but the estimated
measurement error is increased to & = 0.98, and U is dramatically
reduced to 1501 x 10° M.

The estimated power-law exponent ¥ = 0.55 is in reasonable
agreement with the value 0.68 found by Kim et al. (2007) for the
same data set. The PP plots (Fig. 5) show no evidence of data in-
completeness: this is in agreement with the very small completeness
limit of 14.6 M, estimated by Kim et al. (2007). Note also that the
discrepancy between the observed probabilities and those predicted
by the U — oo model (bottom panel) is small. Both finite and infi-
nite U have been claimed in earlier analyses of GMC data for various
galaxies; in fact, different types of distribution have been found to

Table 2. The results of fitting power-law distributions to the masses of H1 clouds in
the LMC (threshold temperature 64 K).

Distribution model
Full o0=0,Ufinite o0#0,U—>00 0=0U-—0

Equation number (5) 4) @) (6)
Model probabilities
AIC 0.938 0 0.062 0
BIC 0.755 0 0.245 0
Number of bins Significance level of goodness-of-fit statistic S
P=10 0.30 p < 0.001 0.40 p < 0.001
P=15 0.60 p < 0.001 0.67 p < 0.001
P =20 0.63 p < 0.001 0.28 p < 0.001
Estimated parameters and standard errors for the full model
y L U o
Estimate 0.55 3.47 2915.9 0.82
Asymptotic S.E.  0.054 0.20 16.0 0.18
Jackknife S.E. 0.053 0.19 1410 0.18

Note. The first part of the table compares the fitting results for the four different power-
law forms discussed in Section 2, while the last few lines give the estimated parameters
with associated standard errors for the optimal model. The unit of mass is 10 Mp.
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Table 3. The results of fitting power-law distributions to the masses of GMCs in the LMC.

Distribution model

Full o0=0,Ufinite o0#0,U—>00 00=0U—
Equation number 5) “4) (7 (6)
Model probabilities
AIC 0.781 0 0.219 0
BIC 0.398 0 0.602 0
Estimated parameters of the two optimal models
y L U c
Estimated full model 0.82 0.45 100.5 0.16
Estimated U — oo model 0.88 0.46 [’ 0.17

Note. The first part of the table compares the fitting results for the four different power-law forms
discussed in Section 2, while the last few lines give the estimated parameters with associated
standard errors for the two optimal models. The unit of mass is 10° Mgp.

apply to different parts of the same galaxy (e.g. Rosolowsky 2005;
Rosolowsky et al. 2007). It would be interesting to see whether
the U — oo model would supplant the finite-U model if realistic
measurement errors for the high-mass end of the distribution were
introduced.

4.3 GMCs in the LMC

A feature of the catalogue of GMC masses in the LMC (Fukui et al.
2008) is that values are only given to one significant digit. There are
consequently only 21 distinct values amongst the N = 230 masses
in the catalogue, ranging from 0.1 to 100 x 10° M. Since the
mass distribution is therefore effectively discrete, with, for example,
39 GMCs assigned masses of 1 x 10° M, it is not possible to
sensibly compare the observed and predicted distributions using
statistics such as those discussed in Section 2.3. Table 3 therefore
only compares the performances of the different models, while
Fig. 6 shows the PP plots for the two optimal models.

It is noteworthy that different models are selected by the AIC
and BIC, respectively. It is generally accepted that the AIC is more
liberal than the BIC in terms of the number of model parameters it
allows, and the results in Table 3 conform to this expectation: the

o
e
.

o
A O
-

o o
o
-
-

‘i ;

Observed probability

©c o o ©
o v A O ®
-

0.4 0.6 0.8 1
Predicted probability

Figure 6. PP plots for the LMC GMC data. The plot in the top panel is for

the CDF (5) (i.e. a finite upper limit U) while the plot in the bottom is for

the CDF (7) (infinite U).
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full model, selected by the AIC, is described by four parameters,
while the BIC-selected model requires only three.

Fukui et al. (2008) found y = 0.75, similar to the values in
Table 3.

5 CONCLUSIONS

The comparison of the estimated parameters for models which ig-
nore the measurement errors with parameters of the optimal models
is instructive. In all three data sets analysed in Section 4, estimated
power-law exponents are smaller if o = 0 is assumed: 0.73 (1.33),
0.46 (0.55) and 0.49 (0.82) for the data discussed in Sections 4.1, 4.2
and 4.3, respectively (full model estimates are given in the brackets).
Similarly for the lower limits L, estimates of 2.5 (6.9), 2.18 (3.47)
and 0.20 (0.45) were found for the three data sets (optimal model
estimates in brackets). Interestingly, the o # 0 model estimates of
U are larger than those obtained assuming no measurement error,
although the difference is negligible in the last two data sets. For the
M 33 data analysed in Section 4.1, U= 77.7,69.2 for the models
with and without measurement errors, respectively.

The differences between the o = 0 and ¢ # 0 models can be
quantified in terms of the estimated standard errors in Tables 1 and
2.1tis 2.2,5.9 and 3.3 for 7, L and U (M 33 data) and 1.7, 6.8 and
0.0 for y, Land U (H1 clouds in the LMC).

The examples in the previous section point to two extensions
to the theory which are required in order to enhance the practical
applicability of the theory in this paper. First, it seems very likely
that in most settings measurement errors will depend on the true
values of variables. For example, in the case of GMCs a model,
such as

o =a+ bx

with a and b constant, seems reasonable (e.g. Rosolowsky 2005).
This complicates the analysis, since o can no longer be treated as a
constant in (3) — it must be included in the integrand. Secondly, the
issue of data completeness has been ignored in the analysis above.
Mathematically, for incomplete data the PDF (2) is replaced by

x—r+D

i 14
fx(x)—g(x)L_ — L

<x=<U,
y —U-v

where the function g, constrained by

/Oog(x)dx=l

o0

0<gx)=<1,
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gives the fractional data completeness. An estimate of the func-
tion g can often be made by consideration of the properties of the
experimental equipment and the measurement techniques.

The identification of incompleteness for data such as those con-
sidered in this paper is an interesting issue. Measurements errors
cause the data to ‘spill’ from the interval [L, U], particularly near
the lower limit L where the probability density f,(x) is largest. This
causes a tailing off of data with decreasing x (x < L), giving the
impression of data incompleteness. The point is illustrated in Fig. 2,
which shows histograms for simulated data with, and without, mea-
surement errors. The data in the bottom panel appear to be complete
over [3, 6.5], and incomplete for smaller y. In actual fact, there is
no incompleteness.

The determination of completeness limits is therefore not entirely
straightforward. A brute force way of dealing with this is to select
a conservative completeness interval, and to ignore all data outside
the interval. The price paid is that the analysis is more complicated
— furthermore, if the completeness interval is too small, it may no
longer be possible to determine L and/or U.
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APPENDIX A: DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTION, TRUNCATED POWER LAW

The following definitions are useful:

1 (yi—x ’
E(i,x):exp—i(l ) ,

o

U
Io(i)=/ x"YTVE@G, x)dx,
L
U
11(1')=/ x~ "D 1log x E(i, x)dx,
L
U
Iz(i)z/ x~ " Dog x)*E(i, x) dx,
L
U
13(1'):/ xf(””(y,-—x)zE(i,x)dx,
L
U
14(i):/ xf(””(y,-—x)“E(i,x)dx,
JL

U
I5(i) = / x~ O V(y — x)?logx E(i, x) dx.
L

(AD

It is assumed throughout that the error variance o> needs to be estimated: if it is known, then derivatives with respect to o can be ignored.

The first derivatives of the log-likelihood function in (8) are

3L N N _ -
5= ————— (U7 logU — L logL) = ) _

y L7v—Uv
oL NyL=o+D v Z E@G, L)

(@)
Ip(i)’

i

L L —U~ Io(i)
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oL NyUy-o+h N U*(V“)Z E@i,U)

U~ Lv—-U~ Io(D)
0 _ N1 EO
d6 o o3 ~ Lo(i)’ (A2)

The second derivatives, required in the information matrix, are

*L N NU7L 5

627‘6 NVZL—Z(V+1) 3 N)/()/+ l)Lf(erZ)
0L? (Lv =U-7)? L7 —U~7

_ E@G, L) _ E@G, L)
L2 +D { :| (y+2) {
Z_: Io(@) Z Io(i)
62[: Ny2u—2(y+l) Ny(y + I)U—(y+2)
oU2  (Lv—-U-7) L7 —U~

E@G,U) _ E@i,U)
—2(y+1) (y+2)
Z{ Ih(i) } Z I(D) {

LN 1 Hh(nr_ 14(1')}_3 I(0)

L) 1%@')}
IG) o)

l)} ,
1)} ,

02 o2 of 1o(i) Io(i) ot = Iy(i)’
*L NyL-0+D NL-+D
= - U7loglU — L1 L—i logL —1
3y0L L —U*V]Z( og ogl) - T —= (vlog )

EG, L) LEG, L)
L~+D1os L L~ (y+1) ’
" o8 zl: Io(l) Z [2(l)
9L N)/Uf(V“) NU*(VH)
= U7logU — L 77logL)+ ——  (ylogU — 1
dydU  [L~7 _U—y]z( 08 ogl)+ ;= (vlog )

— U~V ]og UZ EG.U) + U (V+1)Z II(Z)E(I U)’

Io(i) I5(0)
’L 1 E L)L) I5G)
dydo o3 - CRG) L]’
2L _ _NyzL*W“)U*(V“) 4 LD 4D Z E(G,L)E(i,U)
ALV (L7 —U~7y ,. O
°L  Lwt Z LGEG, L)  (yi— LYEG, L)
0Ldc = o3 13(i) I,(@0) ’
2 i N _— (A3)
oL U E LOEGU) (i —UYEGU)
oUdo o3 - 12G) l(i) .
Maximum-likelihood parameter estimates are obtained by setting the derivatives in (A2) equal to zero; the results
I (@) N N - _
= - 1 —L77logL
Lhw Ty Toogy (UTleet - L7 ed)
E EG, L) Ny
LG) ~— L7v—-U~7
Z EG,U) Ny
— L) =~ L7 —-U-r
13(l) 2
27 =N
G) 7 (Ad)

follow. Note, though, that the last of equations (A4) only applies if o is unspecified.
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The relations (A4) can be used to simplify some of the expressions in (A3) a little:

2 _
oL _ M 2<y+1)z EG. L) Y’ _ - (y+1>z E@, L) (y; — )’
dL? (L7 —U-7)? CIoG) @)  o?
2 -
E _ Ny2U 2<y+1>2 ~ U’Z(V“)Z E(z,.U) (VH)Z EG,U)y — ’
ou? (L —=U™) Iy(@) Iy(@) 02
%L NyL~@+h NL’W“’ LEG, U)
=— U7logU — L™ logL — L=+D
3700 o vl s ogl)+ Z e
°L NyU~@+h NUZUHD LG)E(@, L)
= U7logU — L7 logL +U~*h ,
oyoU  (L7v — U—y)z( g ogl) = Z I2@)
L 2N 1 LH]® L)
oL _ N1 3 AS
002 o2 of Z { {Io(i)] Io(i) (A5)

APPENDIX B: DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTION,
UNTRUNCATED POWER LAW

The first of the following definitions is the same as in (A1); the remainder reflect the fact that the power-law extends to infinity:

. 1L yi—x\’
E@i,x)=exp—< | — | ,
2 o

Jo(i)=/ x OTVEG, x)dx,
L

Jl(i)z/ x " Vogx E(i, x)dx,
L

Jz(i)=/ x~ " (log x)*E(, x) dx,
L

J5(i) =/ 2~y — x)2E(, x) dx,
L

VA :/ 2y — 0)*EG, x) dx,
L

Js(i) = /wx*””(y; —x)logxE(i, x)dx. (B1)
L

It is assumed throughout that the error variance o needs to be estimated: if it is known, then derivatives with respect to o can be ignored.
The first derivatives of the log-likelihood function in (8), with U — oo, are

% E—NlogL—Zjl(l)
y -

oy Jo(@)’

oL E(, L)

9L _NY o+

oL Z To@)

3L N 1 13(1)

oL N 1 , B2
0o o + o3 - Jo(i) (B2)
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The second derivatives, required in the information matrix, are
L N +Z L) JX0)
N N O RO

rL NV2 2(y+1>z {E(’ L)} L—(wl)Z EG.L)Gi—L)

oL? J()(l) J()(l) o? ’
ai: _ 28 1 {Js(i)] Ja(i)
02 o2 oS\ [hd] Al [
L N [~y SOEG L)
ayaL_Z(HylogL)_ ’ Z RGO
L

_ Ji@HE  I50)
dyds o3 Z { JE@) Jo(l')} '

L L—<v+1> 5 [h(z)E(z’,L) O —L)ZE(i,L)}

0Ldc ~ o° i) Jo(i) (B3)
Relations analogous to (A4) are
AO) N
- = —+NloglL,
250 =y ¢
E@,L
Z (z,. ) — NyLY,
Jo(i)
Z ]3(1:) — No2. (B4)
Jo(@)

Note that the last of equation (B4) only applies if ¢ is unspecified. These equations were used to simplify (B3).
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