Simthembile DlaminiSheean JolicoeurRoy Maartens2024-10-152024-10-152024Dlamini, S., Jolicoeur, S. and Maartens, R., 2024. Constraining the growth rate on linear scales by combining SKAO and DESI surveys. The European Physical Journal C, 84(1), pp.1-11.https://doi.org/10.1140/epjc/s10052-024-12467-5https://hdl.handle.net/10566/16301In the pursuit of understanding the large-scale structure of the Universe, the synergy between complementary cosmological surveys has proven to be a powerful tool. Using multiple tracers of the large-scale structure can significantly improve the constraints on cosmological parameters. We explore the potential of combining the Square Kilometre Array Observatory (SKAO) and the Dark Energy Spectroscopic Instrument (DESI) spectroscopic surveys to enhance precision on the growth rate of cosmic structures.We employ a multi-tracer Fisher analysis to estimate precision on the growth rate when using pairs of mock surveys that are based on SKAO and DESI specifications. The pairs are at both low and high redshifts. For SKA-MID, we use the HI galaxy and the HI intensity mapping samples. In order to avoid the complexities and uncertainties at small scales, we confine the analysis to scales where linear perturbations are reliable. The consequent loss of signal in each individual survey is mitigated by the gains from the multi-tracer. After marginalising over cosmological and nuisance parameters, we find a significant improvement in the precision on the growth rate.enDark Energy Spectroscopic Instrument (DESI)Square Kilometre Array Observatory (SKAO)intensity mapping (IM)Emission Line Galaxies (ELG)redshift space distortions (RSD)Constraining the growth rate on linear scales by combining SKAO and DESI surveysArticle