Research Articles (Chemistry)
Permanent URI for this collection
Browse
Browsing by Subject "Acid"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Acylation of anisole with benzoyl chloride over rapidly synthesized fly ash–based hbea zeolite(Frontiers Media, 2021) Ameh, Alechine E.; Musyoka, Nicholas M.; Oyekola, OluwaseunStable HBEA zeolite with high surface area and strong acid sites was synthesized from coal fly ash–based silica extract via indirect hydrothermal synthesis. The rapid HBEA hydrothermal crystallization times of 8, 10, and 12 h were achieved through a reduced molar water fraction in the synthesis composition. The HBEA zeolites prepared from fly ash silica extract exhibited well-defined spheroidal-shaped crystal morphology with uniform particle sizes of 192, 190, or 239 nm obtained after 8, 10, or 12 h of synthesis time, respectively. The high surface area and the microporous area of 702 and 722 m2 /g were achieved as a function of shorter hydrothermal synthesis durations (10 and 24 h, respectively) compared to 48 or 72 h, which resulted in HBEA zeolites with lower surface areas of 538 and 670 m2 /g. Likewise, temperature-programmed desorption measurements of fly ash–based HBEA zeolites revealed the presence of weak and strong acid sites in the zeolite.Item Synthesis of stabilized iron nanoparticles from acid mine drainage and Rooibos tea for application as a Fenton-like catalyst(American Chemical Society, 2022) Kimpiab, Elyse; Kapiamba, Kashala Fabrice; Petrik, LeslieIntensive mining activities generate toxic acid mine drainage (AMD) effluents containing a high concentration of metals, including iron. The chemical synthesis of iron nanoparticles from this waste could lead to further environmental concerns. Therefore, the green synthesis of nanoparticles using plants has gained significant interest because of several benefits, including being eco-friendly. The current study reports a novel approach involving the synthesis of stabilized iron nanoparticles from AMD using rooibos tea extract. An aqueous solution of rooibos tea was prepared and titrated with AMD to reduce Fe2+/Fe3+. The samples synthesized under optimum conditions were characterized by TEM, XRD, FTIR, UV−Vis, and EDS. The results revealed that the nanoparticles had an average particle size of 36 nm with a spherical shape. These particles showed promising application as a Fentonlike catalyst for the degradation of textile dye (orange II sodium salt) with a removal efficiency of 94% within 30 min. Thus, the stabilized iron nanoparticles synthesized here performed in higher ranges than the currently reported Fenton-like catalysts regarding dye removal efficiency and reaction time.