Browsing by Author "Karagiannis, Dionysios"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Cosmological constraints from the power spectrum and bispectrum of 21cm intensity maps(IOP Publishing, 2022) Karagiannis, Dionysios; Maartens, Roy; Randrianjanahary, Liantsoa F.The 21cm emission of neutral hydrogen is a potential probe of the matter distribution in the Universe after reionisation. Cosmological surveys of this line intensity will be conducted in the coming years by the SKAO and HIRAX experiments, complementary to upcoming galaxy surveys. We present the first forecasts of the cosmological constraints from the combination of the 21cm power spectrum and bispectrum. Fisher forecasts are computed for the constraining power of these surveys on cosmological parameters, the BAO distance functions and the growth function. We also estimate the constraining power on dynamical dark energy and modified gravity. Finally we investigate the constraints on the 21cm clustering bias, up to second order. We take into account the effects on the 21cm correlators of the telescope beam, instrumental noise and foreground avoidance, as well as the Alcock-Paczynski effect and the effects of theoretical errors in the modelling of the correlators.Item Quijote-png: Quasi-maximum likelihood estimation of primordial non-gaussianity in the nonlinear dark matter density field(American Astronomical Society, 2022) Jung, Gabriel; Karagiannis, Dionysios; Liguori, MicheleFuture large-scale structure surveys are expected to improve current bounds on primordial non-Gaussianity (PNG), with a significant impact on our understanding of early universe physics. The level of such improvements will however strongly depend on the extent to which late-time nonlinearities erase the PNG signal on small scales. In this work, we show how much primordial information remains in the bispectrum of the nonlinear dark matter density field by implementing a new, simulation-based methodology for joint estimation of PNG amplitudes ( fNL) and standard Lambda cold dark matter parameters. The estimator is based on optimally compressed statistics, which, for a given input density field, combine power spectrum and modal bispectrum measurements, and numerically evaluate their covariance and their response to changes in cosmological parameters. In this first analysis, we focus on the matter density field, and we train and validate the estimator using a large suite of N-body simulations (QUIJOTE-PNG), including different types of PNG (local, equilateral, orthogonal).Item Quijote-png: Simulations of primordial non-gaussianity and the information content of the matter field power spectrum and bispectrum(IOP Publishing, 2023) Coulton, William R; Villaescusa-Navarro, Francisco; Karagiannis, DionysiosPrimordial non-Gaussianity (PNG) is one of the most powerful probes of the early universe, and measurements of the large-scale structure of the universe have the potential to transform our understanding of this area. However, relating measurements of the late-time universe to the primordial perturbations is challenging due to the nonlinear processes that govern the evolution of the universe. To help address this issue, we release a large suite of N-body simulations containing four types of PNG: QUIJOTE-PNG. These simulations were designed to augment the QUIJOTE suite of simulations that explored the impact of various cosmological parameters on large-scale structure observables. Using these simulations, we investigate how much information on PNG can be extracted by extending power spectrum and bispectrum measurements beyond the perturbative regime at z = 0.0. This is the first joint analysis of the PNG and cosmological information content accessible with power spectrum and bispectrum measurements of the nonlinear scales. We find that the constraining power improves significantly up to kmax 0.3 Mpc h » -1 , with diminishing returns beyond as the statistical probes signal-to-noise ratios saturate. This saturation emphasizes the importance of accurately modeling all the contributions to the covariance matrix. Further, we find that combining the two probes is a powerful method of breaking the degeneracies with the ΛCDM parameters.Item Quijote-png: The information content of the halo power spectrum and bispectrum(IOP Publishing, 2023) Coulton, William R; Villaescusa-Navarro, Francisco; Karagiannis, DionysiosWe investigate how much can be learnt about four types of primordial non-Gaussianity (PNG) from small-scale measurements of the halo field. Using the QUIJOTE-PNG simulations, we quantify the information content accessible with measurements of the halo power spectrum monopole and quadrupole, the matter power spectrum, the halo–matter cross spectrum, and the halo bispectrum monopole. This analysis is the first to include small, nonlinear scales, up to kmax 0.5 h Mpc = -1 , and to explore whether these scales can break degeneracies with cosmological and nuisance parameters making use of thousands of N-body simulations. We perform all the halo measurements in redshift space with a single sample comprised of all halos with mass >3.2 × 1013 h−1 Me. For local PNG, measurements of the scale-dependent bias effect from the power spectrum using sample variance cancellation provide significantly tighter constraints than measurements of the halo bispectrum. In this case measurements of the small scales add minimal additional constraining power. In contrast, the information on equilateral and orthogonal PNG is primarily accessible through the bispectrum. For these shapes, small-scale measurements increase the constraining power of the halo bispectrum by up to 4×, though the addition of scales beyond k ≈ 0.3 h Mpc−1 improves constraints largely through reducing degeneracies between PNG and the other parameters.