Browsing by Author "Jarvis, M.J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item HELP: The Herschel Extragalactic Legacy Project(Oxford University Press, 2021) Jarvis, M.J.; Shirley, R; Duncan, K; Campos Varillas, M.C.; Hurley, P.D.; Malek, K; Roehlly, Y; Oliver, S.J.We present the Herschel Extragalactic Legacy Project (HELP). This project collates, curates, homogenizes and creates derived data products for most of the premium multiwavelength extragalactic data sets. The sky boundaries for the first data release cover 1270 deg2 defined by the Herschel SPIRE extragalactic survey fields; notably the Herschel Multi-tiered Extragalactic Survey (HerMES) and the Herschel Atlas survey (H-ATLAS). Here, we describe the motivation and principal elements in the design of the project. Guiding principles are transparent or 'open' methodologies with care for reproducibility and identification of provenance. A key element of the design focuses on the homogenization of calibration, metadata, and the provision of information required to define the selection of the data for statistical analysis. We apply probabilistic methods that extract information directly from the images at long wavelengths, exploiting the prior information available at shorter wavelengths and providing full posterior distributions rather than maximum-likelihood estimates and associated uncertainties as in traditional catalogues. With this project definition paper, we provide full access to the first data release of HELP; Data Release 1 (DR1), including a monolithic map of the largest SPIRE extragalactic field at 385 deg2 and 18 million measurements of PACS and SPIRE fluxes. We also provide tools to access and analyse the full HELP database. This new data set includes far-infrared photometry, photometric redshifts, and derived physical properties estimated from modeling the spectral energy distributions over the full HELP sky. All the software and data presented are publicly available. © 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.Item MIGHTEE: Total intensity radio continuum imaging and the COSMOS/XMM-LSS Early Science fields(University of the Western Cape, 2022) Heywood, I.; Jarvis, M.J.; Hale, C.L.MIGHTEE is a galaxy evolution survey using simultaneous radio continuum, spectropolarimetry, and spectral line observations from the South African MeerKAT telescope. When complete, the survey will image ∼20 deg2 over the COSMOS, E-CDFS, ELAIS-S1, and XMM-Newton Large Scale Structure field (XMM-LSS) extragalactic deep fields with a central frequency of 1284 MHz. These were selected based on the extensive multiwavelength data sets from numerous existing and forthcoming observational campaigns. Here, we describe and validate the data processing strategy for the total intensity continuum aspect of MIGHTEE, using a single deep pointing in COSMOS (1.6 deg2) and a three-pointing mosaic in XMM-LSS (3.5 deg2). The processing includes the correction of direction-dependent effects, and results in thermal noise levels below 2 μJy beam−1 in both fields, limited in the central regions by classical confusion at ∼8 arcsec angular resolution, and meeting the survey specifications. We also produce images at ∼5 arcsec resolution that are ∼3 times shallower. The resulting image products form the basis of the Early Science continuum data release for MIGHTEE. From these images we extract catalogues containing 9896 and 20 274 radio components in COSMOS and XMM-LSS, respectively. We also process a close-packed mosaic of 14 additional pointings in COSMOS and use these in conjunction with the Early Science pointing to investigate methods for primary beam correction of broad-band radio images, an analysis that is of relevance to all full-band MeerKAT continuum observations, and wide-field interferometric imaging in general. A public release of the MIGHTEE Early Science continuum data products accompanies this article.