Browsing by Author "Egunlusi, Ayodeji O."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives as nmda receptor- And VGCC blockers with neuroprotective potential(MPDI, 2020) Egunlusi, Ayodeji O.; Malan, Sarel F.; Omoruyi, Sylvester IfeanyiThe impact of excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptor overactivation and voltage gated calcium channel (VGCC) depolarization is prominent among the postulated processes involved in the development of neurodegenerative disorders. NGP1-01, a polycyclic amine, has been shown to be neuroprotective through modulation of the NMDA receptor and VGCC, and attenuation of MPP+-induced neurotoxicity. Recently, we reported on the calcium modulating effects of tricycloundecene derivatives, structurally similar to NGP1-01, on the NMDA receptor and VGCC of synaptoneurosomes. In the present study, we investigated novel 4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives for their cytotoxicity, neuroprotective effects via attenuation of MPP+-induced neurotoxicity and calcium influx inhibition abilities through the NMDA receptor and VGCC using neuroblastoma SH-SY5Y cells. All compounds, in general, showed low or no toxicity against neuroblastoma cells at 10-50 μM concentrations. At 10 μM, all compounds significantly attenuated MPP+-induced neurotoxicity as evident by the enhancement in cell viability between 23.05 ± 3.45% to 53.56 ± 9.29%.Item Synthesis of 4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives as lead scaffolds for neuroprotective agents(Arkat USA, 2020) Egunlusi, Ayodeji O.; Malan, Sarel F.; Joubert, JacquesNeurodegenerative disorders are characterised by progressive loss of neuronal functions. Of the proposed mechanisms, excitotoxicity, mediated by prolonged glutamate activation and calcium overload, is prominent. NGP1-01, a polycyclic cage amine, and tricyclo[6.2.1.02,7]undec-9-ene-3,6-dione have been shown to display calcium-modulating properties. In this study, we synthesised structurally-related 4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione as the base scaffold, and incorporated various functional moieties through aminolysis, to afford a series of imide derivatives. All final compounds were obtained in yields between 47-97% and their structures were confirmed by NMR, IR and MS. These structurally-related derivatives could potentially act as neuroprotective agents. Additionally, their synthetic versatilities could make them precursors, as lead compounds, to potential pharmacologically-active agents.