Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cloete, Ruben Earl Ashley"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Molecular dynamic simulation studies of the South African HIV-1 Integrase subtype C protein to understand the structural impact of naturally occurring polymorphisms
    (University of the Western Cape, 2021) Isaacs, Matthew Darren; Cloete, Ruben Earl Ashley
    The viral Integrase (IN) protein is an essential enzyme of all known retroviruses, including HIV-1. It is responsible for the insertion of viral DNA into the human genome. It is known that HIV-1 is highly diverse with a high mutation rate as evidenced by the presence of a large number of subtypes and even strains that have become resistant to antiretroviral drugs. It remains inconclusive what effect this diversity in the form of naturally occurring polymorphisms/variants exert on IN in terms of its function, structure and susceptibility to IN inhibitory antiretroviral drugs. South Africa is home to the largest HIV-1 infected population, with (group M) subtype C being the most prevalent subtype. An investigation into IN is therefore pertinent, even more so with the introduction of the IN strand-transfer inhibitor (INSTI) Dolutegravir (DTG). This study makes use of computational methods to determine any structural and DTG drug binding differences between the South African subtype C IN protein and the subtype B IN protein. The methods employed included homology modelling to predict a three-dimensional model for HIV-1C IN, calculating the change in protein stability after variant introduction and molecular dynamics simulation analysis to understand protein dynamics. Here we compared subtype C and B IN complexes without DTG and with DTG.
  • Loading...
    Thumbnail Image
    Item
    Molecular dynamic simulation studies of the South African HIV-1 Integrase subtype C protein to understand the structural impact of naturally occurring polymorphisms
    (University of Western Cape, 2021) Isaacs, Darren Mathew; Cloete, Ruben Earl Ashley
    The viral Integrase (IN) protein is an essential enzyme of all known retroviruses, including HIV-1. It is responsible for the insertion of viral DNA into the human genome. It is known that HIV-1 is highly diverse with a high mutation rate as evidenced by the presence of a large number of subtypes and even strains that have become resistant to antiretroviral drugs. It remains inconclusive what effect this diversity in the form of naturally occurring polymorphisms/variants exert on IN in terms of its function, structure and susceptibility to IN inhibitory antiretroviral drugs. South Africa is home to the largest HIV-1 infected population, with (group M) subtype C being the most prevalent subtype. An investigation into IN is therefore pertinent, even more so with the introduction of the IN strand-transfer inhibitor (INSTI) Dolutegravir (DTG).

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback